MAT-60556 Mathematical Logic, 5 cr


Suitable for postgraduate studies.


Esko Turunen


Toteutuskerta Periodi Vastuuhenkilö Suoritusvaatimukset
MAT-60556 2019-01 4 Esko Turunen
Lecture diary and examination.


The course is based on the first and second chapter of Gaisi Takeuti’s in 1987 published book Proof Theory (Studies in Logic and the Foundations of Mathematics). The first chapter introduces Gentzen's sequent calculi for Intuitionistic Logic (LJ) and Classical Logic (LK) and proves Gentzen's cut-elimination theorem as well as completeness theorems for both LJ and LK. The second chapter is Gentzen's second proof of the eliminability of essential cuts from a derivation of the empty sequent in Peano Axioms. All these results are needed to prove the main result of the course: Gödel’s two incompleteness theorems and Tarski’s teorem. After completing the course, the student knows what the fundamental results of mathematical logic are, in particular the proof theoretical approach, Completeness of propostional and first order logc, Gödel's incompleteness theorems, Tarskis theorem, Löwenheim-Skolem theorem, Herbrand theorem. A rudimentary understanding of proof theory is formed, and the student is able to apply some basic results and knows some details of basic techniques such as truth tables.


Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. The basic ideas of Gentzen's proof theory, logical foundations of classical and intuitionistic mathematical theories.  Gödel's incompleteness theorems   
2. Equational, propositional and predicate calculus.  Peano Axioms od arithmetic   
3. Connections to meta-mathematics and computation.  Lindenbaum algebra, connection to Boolean and Hayting algebras   

Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi

Visit the lectures, do meticulous lecture notes, do all the home exercises in time and participate actively in exercises. Inquire about things that are unclear to you.


Numerical evaluation scale (0-5)


Completion parts must belong to the same implementation


Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Book   Proof Theory   Gaisi Takeuti         No   
Lecture slides     Esko Turunen         Yes   

Tietoa esitietovaatimuksista
No individual pre-requisites, however, following the course requires a sufficient amount of mathematical thinking from the 1st, 2nd and 3rd year mathematics courses.


Opintojakso ei vastaan mitään toista opintojaksoa

Päivittäjä: Turunen Esko, 01.04.2019