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RAK-33060 Fracture mechanics and fatigue

2. Home exercise - weight functions, elastic-plastic FM, fatigue, etc.

1. An internal crack in a large plate is loaded with an internal pressure p along 10% of its
length adjacent to the crack tips. How large should this pressure to be to give the same
contribution to the stress intensity factor as an outer nominal tensile traction σ∞?

2. Determine the maximum allowed load for the cracked beam shown below. The length
of the crack is a = 5 mm. Use the elastic-plastic correction by (a) Irwin or (b) the
Dugdale’s yield strip model. Dimensions are: length L = 1 m, height h = 50 mm, width
b = 5 mm, Young’s modulus E = 210 GPa, fracture toughness KIc = 75 MPam1/2 and
the yield stress σ0 = 340 MPa.

3. The horizontal boundaries of a very long plate, shown below (a� h, b� h), are fastened
to a foundation via slip joints and are subjected to a prescribed displacement δ. The
material is elasto-plastic (E = 200 GPa, σ0 = 250 MPa) with a uniaxial stress-strain
behaviour

σ = Eε, if ε < ε0, and σ = Eε0(ε/ε0)
n if ε ≥ ε0,

where ε0 = σ0/E and n = 0.1. Determine the displacement δ at initiation of crack
growth if h = 100 mm and the fracture toughness is JIc = 120kNm/m2. Assume plane
stress contitions and the crack growth criteria is J = JIc.
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4. A long, very deeply cracked plate shown in the figure below is subjected to a tensile
load P = 4 MN. Use the R6 method to estimate the minimun size of the ligament for
which no risk of crack growth exists. Use equation (9.68a) on page 416 in Anderson’s
book for the Kr. Plane deformation can be assumed. The stress intensity factor for this
case can be written as

KI =
P

t
√
πc
,

where t is the thickness of the plate. Apply the data: yield stress σy = 400 MPa,
fracture toughness KIc = 150 MPa

√
m, plate thickness is t = 4 cm.

See the figure on the last page for the limit load.

5. The Basquin relation σaf = σ′f(2N)−b and the S-N curve describe the same phenomenon.
Assume that the S-N curve is linear in the double logarithmic scale between 103 ≤ N ≤
106 and the fatigue strengths at N = 103 is ξ3σu and at N = 106 is ξ6σu. How the
parameters in both descriptions are related? Consider as an example a high-strength
steel for which σu = 1500 MPa, ξ3 = 0.9 and ξ6 = 0.5.



RAK-33060 Fracture mechanics and fatigue - 2. Home exercise 3

6. Construct the S-N curve (R = −1) of a plate with a surface crack and made of high
strength steel σy = 1100 MPa, KIc = 60 MPa

√
m. During manufacturing inspection all

cracks deeper than 1 mm are detected. It can be assumed that the crack grows in a self
similar fashion (c = 1.25a) and can be described by the Paris law

da

dN
= C

(
∆KI

Kref

)n

.

The constants have the values C = 10−7 m/cycle, Kref = 20 MPa
√

m, n = 3.2 and the
threshold value ∆Kth = 8 MPa

√
m. The maximum stress can occasionally reach the

level 375 MPa.

Hint. Use the threshold value to compute the kink point (∆σu, Nu) in the figure b
below. For the stress intensity factor see page 4.

69. The residual life of a plate of high strength material ( CJy
= 1100 MPa, Krc

= 60 MPa m 112)
containing surface cracks according to figure (a) can be described in a so called S-N dia
gram shown in figure (b ). The plate is a part of a lorry and is subjected to a stress that
varies with time so that the maximum level at few occasions can reach 375 MPa. During
manufacturing inspection all cracks deeper than a= 1 mm are detected. Determine the
expression for the curve in figure (b) and the fatigue limit (11CJu, Nu). Assume that the
crack growth in self similar fashion ( c= 1.25a) according to

(a) 

70. 

da _ -7(
11KI)n

_ 1/2 _ 
dN - 10 

K 
m/cycle, K7 - 20 MPa m , n - 3.2 

7 

and the threshold value, Mth, is equal to 8 MPa m 112. 

(J 2c 

t=50 mm 

b
<l on 

(b) 

logN 

In a large ship plate two approximately equal -i 
+ t t ifatigue cracks with the length a0 emanating from _ _ _ _ _ _ _ _ 

CJ
00 

either side of a hole according to the figure. The , , 
plate is loaded in cyclic tension with CJmax 

= CJ
00 

and CJ min 
= 0 .2 CJ

00
, the loading frequency 6 

cycles per minute. Calculate the remaining life of 
the plate if the two cracks can expected to continue 
to grow symmetrically. Chose the safety factor s =

1.4 with respect to load. The growth follows a a 

da/ dN = C11K.7. 

The stress-intensity factor can with good accuracy 
be approximated by 

t - -, - - , - -L - t (Joo 

I It

I 

K1 
= CJ00 Jiaf(a/r), where f(a/r) = 1, 42(�)-6

Material data in the service environment: CJy = 600 MPa 
Krc 

= 90 MPaJm 
n = 3
C = 10-

11m1112 /MN3

26 

7. In the multiaxial Findley fatigue criterion the fatigue takes place in a plane where the
expression τa,n + kσn attains its maximum, i.e.

max(τa,n + kσn) = f, (1)

where k and f are material parameterd which can be determined from two tests.
Determine k and f if we know the fatigue limit for fully reversed uniaxial normal
σ−1 = σa,R=−1 and shear τ−1 = τa,R=−1. Determine also the critical angles for both
loading cases.
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iption of the dashed part of Fig. 26. The following approach, called the R6 method, has 
:xtensively and has been developed into a standard document, Milne et al [61]. Basi
l be regarded as a correction for plastic deformation to the linear elastic fracture 
Jf the form 

2 
J = Jc/UR6(F /Pl)) (7.28) 

,ly possible to w1ite Jin the form (7.28) for any specific geometry and strictly the cor
:tion will be different for different geometries and crack sizes. By numerical experi
it has, however, been found that a correction function of the form in (7.28) is 
insensitive to geometry and the following expression is a conservative estimate for 
Jf practical interest. 

/R6(Lr)<( l-0.14Lr) 0.3+0.7e 
2 

( 
-0.65L;'

) 

g the approxima
into the initiation 
15) and assuming
:7.16), we arrive at
; condition for non
:rack growth

</R6(L .. ) .  (7.31) 

Kr 

Lr = F/P1•
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(7.30) 

erion is illustrated 
�re an upper bound 
shown which is in 
,;ith the procedure 
is upper limit is  
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Fig. 28. Crack growth condition according to (7.31). 

Lmax = !(] (JUTS)
l 2 + 

Cly (7.32) 

nate tensile stress CJ UTS appears. It should be emphasized that in all applications of

dure it is assumed that the limit load calculation is based on the initial yield stress 
is the box corresponding to Kr= l and L .. =1 is marked by dashed lines. The first of 
ions is simply the LEFM condition, while the second implies that the limit load 
e exceeded. We can thus look at the R6 procedure as an improvement of the design 

philosophy that neither linearly elastic fracture nor plastic collapse should occur. Diagrams of the 
type shown in Fig. 28 are often called failure assessment diagrams (FAD). 

In both of the methods discussed, the J estimation procedure is based on the linearly elastic 
stress-intensity factor and the limit load of the cracked structure. Some results for common 
geometries are shown in Fig. 29. 
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Fig. 29. Limit loads for some selected geometries. Index pd denotes plane deformation while 
ps denotes plane stress.

Figures from F. Nilsson, Fracture Mechanics - from Theory to Applications, 2001, on page
181 and 71. Published by the Department of Solid Mechanics, Royal Institute of Technology,
Stockholm, Sweden.


