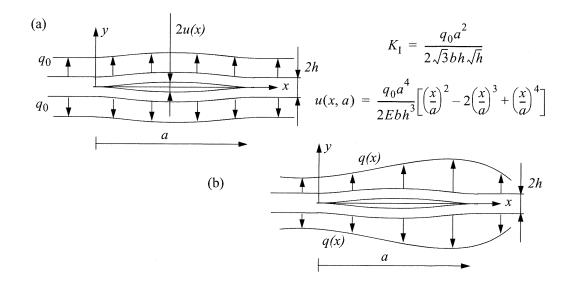
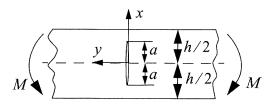
RAK-33060 Fracture mechanics and fatigue

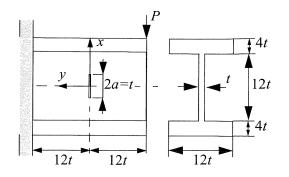

4. Exercise, energy principles, weight functions

1. Use the principle of virtual work to solve the following beam problem


$$EI\frac{\mathrm{d}^4 v}{\mathrm{d}x^4} = q, \quad x \in (0, L)$$

with boundary conditions v(0) = v'(0) = 0, $v(L) = \Delta$ and M(L) = 0. For the prescribed displacement Δ choose $\Delta = \alpha q L^4 / (12 E I)$, where α is a dimensionless parameter.

- (a) Construct the simplest possible trial function for v(x).
- (b) Construct the corresponding virtual displacement $\delta v(x)$.
- (c) Solve the problem and plot the deflection v and the bending moment M(x) for $\alpha = 0.02$.
- 2. Determine the weight function h(x) and give the expression for the stress-intensity factor of the right crack tip in the split beam loaded with arbitrarily distributed load q(x) (force/length) according to the figure (b). Width of the beam is b. Utilise the solution to the problem in figure a(and assume plane stress conditions. Calculate $K_{\rm I}$ for the case $q(x) = q_0 x/a$.


3. A beam of width b has a crack according to the figure below and is loaded in pure bending. Determine the stress-intensity factor when $h \gg 2a$. The material is linearly elastic.

The weight function is

$$h(x) = \frac{1}{\sqrt{\pi a}} \sqrt{\frac{a+x}{a-x}}.$$

4. A short cantilever beam of a linearly elastic material contains a crack oriented according to the figure below. Compute an approximate expression for the stress intensity factor if the height of the web of the I-beam can be regarded as much larger than the crack size.

