RAK-33060 Fracture mechanics and fatigue

3. Exercise

1. A large plate has a crack inclined by an angle α w.r.t. the horizontal line. The length of the crack is 2a. The plate is loaded by a horizontal tensile stress $\sigma_x = \sigma_{\infty}$. Determine the stress intensity factors at the crack tip. At the end of this paper there is a table of stress intensity factors for basic loading cases.

2. Investigate the previous structure. Assume that the fracture occurs if

$$\left(\frac{K_{\rm I}}{K_{\rm Ic}}\right)^2 + \left(\frac{K_{\rm II}}{K_{\rm IIc}}\right)^2 = 1,$$

where $K_{\rm Ic} \neq K_{\rm IIc}$. Investigate which angles α are the most dangerous as a function of the ratio $K_{\rm Ic}/K_{\rm IIc}$.

- 3. A crack grows along the interface in a bi-material bar of width B under a tensile force F (figure below on the LHS).
 - (a) Determine the crack driving force \mathcal{G} using simple bar model.
 - (b) Determine K_{II} for the case $E_1 = E_2$ under the assumption that pue mode II and plane stress is present.

4. Calculate the crack driving force \mathcal{G} and the stress intensity factor $K_{\rm I}$ for the structure shown above on the right hand side. Assume the state of plane strain and that $h \ll a$.

5. Calculate the crack deflection angle φ for the two configurations shown below. Use the criterion of maximum circumferential stress and assume $\tau_0 = \sigma_0/2$.

 $K_{I} = 1.1215 \sigma \sqrt{\pi a}$ $K_{I} = \sigma \sqrt{\pi a} F_{I}(a/b)$ $F_{I} = \frac{1 - 0.025(a/b)^{2} + 0.06(a/b)^{4}}{\sqrt{\cos(\pi a/2b)}}$