RAK-33060 Fracture mechanics and fatigue

3. Exercise

1. A large plate has a crack inclined by an angle α w.r.t. the horizontal line. The length of the crack is $2 a$. The plate is loaded by a horizontal tensile stress $\sigma_{x}=\sigma_{\infty}$. Determine the stress intensity factors at the crack tip. At the end of this paper there is a table of stress intensity factors for basic loading cases.

2. Investigate the previous structure. Assume that the fracture occurs if

$$
\left(\frac{K_{\mathrm{I}}}{K_{\mathrm{Ic}}}\right)^{2}+\left(\frac{K_{\mathrm{II}}}{K_{\mathrm{IIc}}}\right)^{2}=1
$$

where $K_{\text {Ic }} \neq K_{\text {IIc }}$. Investigate which angles α are the most dangerous as a function of the ratio $K_{\text {Ic }} / K_{\text {IIc }}$.
3. A crack grows along the interface in a bi-material bar of width B under a tensile force F (figure below on the LHS).
(a) Determine the crack driving force \mathcal{G} using simple bar model.
(b) Determine $K_{\text {II }}$ for the case $E_{1}=E_{2}$ under the assumption that pue mode II and plane stress is present.

4. Calculate the crack driving force \mathcal{G} and the stress intensity factor K_{I} for the structure shown above on the right hand side. Assume the state of plane strain and that $h \ll a$.
5. Calculate the crack deflection angle φ for the two configurations shown below. Use the criterion of maximum circumferential stress and assume $\tau_{0}=\sigma_{0} / 2$.

	$\left\{\begin{array}{c}K_{I} \\ K_{I I}\end{array}\right\}=\left\{\begin{array}{c}\sigma \\ \tau\end{array}\right\} \sqrt{\pi a}$
	$\left\{\begin{array}{l}K_{I}^{ \pm} \\ K_{I I}^{ \pm}\end{array}\right\}=\left\{\begin{array}{l}P \\ Q\end{array}\right\} \frac{1}{\sqrt{\pi a}} \sqrt{\frac{a \pm b}{a \mp b}}$
	$\left\{\begin{array}{c}K_{I} \\ K_{I I}\end{array}\right\}=\left\{\begin{array}{l}\sigma \\ \tau\end{array}\right\} \sqrt{2 b \tan \frac{\pi a}{2 b}}$
	$\left\{\begin{array}{l}K_{I} \\ K_{I I}\end{array}\right\}=\left\{\begin{array}{l}P \\ Q\end{array}\right\} \frac{2}{\sqrt{2 \pi b}}$
	$K_{I}=1.1215 \sigma \sqrt{\pi a}$
6	$\begin{gathered} K_{I}=\sigma \sqrt{\pi a} F_{I}(a / b) \\ F_{I}=\frac{1-0.025(a / b)^{2}+0.06(a / b)^{4}}{\sqrt{\cos (\pi a / 2 b)}} \end{gathered}$

