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RAK-33060 Fracture mechanics and fatigue

2. Exercise

Problem 1. A tip loaded cantilever I-beam has cracks at the clamped end. The cross-

section can be considered as an ideal I-pro�le. In the web there is a crack of length 2aw = 2t
positioned symmetrically about the neutral axis. At the �ange tips there are two symmetri-

cally positioned cracks. How long (af =?) these �ange tip cracks should be in order to be

more dangerous than the crack in the web? Thickness of the web is t and the �anges 3t/2,
respectively. The other dimensions are related as L/h = 10, h/t = 50 and b = h/2. The

fracture toughness in the mode II is KIIc = (
√

3/2)KIc, where KIc is the mode I fracture

toughness.

You can assume that the shear stresses are distributed uniformly in the web. As the

cross-section is assumed to be an ideal I-section, the moment of inertia for the web can be

neglected. The bending stresses can also be assumed to have a constant value in the �anges.
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Solution. The absolute value of the bending moment at the clamped end is M = FL, and
assuming an ideal I-pro�le, the resultant of the stresses at �anges gives M = σ 3

2 tbh (*), from

which we get

σ =
2F

3tb

L

h
.

The stress intensity factor for the crack in the �ange is KI = fσ
√
πaf , where f = 1, 12.

The shear stress in the web is τ = F/th and the stress intensity factor KII = τ
√
πaw,

where now aa = t.
The condition asked in the problem is therefore

KI

KIc
>

KII

KIIc
,

from which we get

f
2F

3tb

L

h

√
πaf

F

th

√
πaw

>
KIc√
3
2 KIc

,

and further

af > 3

(
b

L

)2 t

f2
≈ 6 · 10−3t.

(*) If the normal stresses are assumed to be constant in the �anges and neglecting the

e�ect of normal stresses in the web, we can compute the moment easily by consideting the

resultant force in the �ange NF = σb32 t and then the moment is M = NFh = 3
2σtbh.
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Problem 2. Determine the stress intensity factor KI for a penny-shaped crack of radius a
in an in�nite domain under uniaxial stress σ. Use the Gri�th energy approach assuming that

stresses are relaxed in a ball of radius a around the crack. Compare to the values you have

found in the literature.

Solution. Assume that stresses vanish in a ball around the crack. Thus the potential energy

is reduced to a value

Π = Π0 −
4

3
πa3

(
1

2
σε

)
= Π0 −

4

3
πa3

(
1

2

σ2

E

)
. (1)

Area of the crack is A = πa2, thus
a =

√
A/π. (2)

The crack driving force is

G = −dΠ

dA
=

d

dA

(
4

3
π

(
A

π

)3/2
)(

1

2

σ2

E

)
=

1√
π
A1/2σ

2

E
=
aσ2

E
. (3)

The stress intensity factor is then

KI =
√
GE =

√
aσ.

The analytical solution is

KI =
2√
π

√
aσ.

Simple approach gives amazingly good result, the error is only -11 %.
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Problem 3. A thick plate containg a circular delamination crack is loaded by a point force

according to �gure (a). Determine the stress intensity factor KI and decide the critical load

for fracture if KIc = 200 MPam1/2, β = 0.1, t = 10 cm, a = 20 cm.

Hint. For a circular rigidly �xed plate according to �gure (b) the displacement of the

loading point due to a force is

∆ =
3(1− ν2)

4π

PR2

Ed3
.

Solution. The potential energy at the solution point is

Π = −1

2
Pδ = −1

2
P 2 3(1− ν2)R2

4πE(βt)3
.

The crack driving force is thus

G = − 1

2πa

dΠ

da
=

3P 2(1− ν2)
8π2E(βt)3

.

In plane strain we have

G =
K2

I

E′
=
KI(1− ν2)

E
.

The design equation is to equate the stress intensity factor to the fracture toughness

KI =

√
3

2π
√

2(βt)3/2
P = KIc.

The maximum allowable load is thus P = 1.026 MN.
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Problem 4. Consider a DCB-test (Double Cantilever Beam) in a �exible testing apparatus.

Draw the dimensionless crack driving force G/Gc as a function of the dimensionless crack

length a/a0 using di�erent values of the �exibility ratio CF /C(a0). How �exible has the

testing machine to be to produce unstable crack growth for a materal which has a shallow

(nearly constant) R-curve?

118 4 Linear fracture mechanics

is met. When the load is further increased, the equilibrium condition (4.133) is no
longer fulfilled and the crack starts to propagate dynamically. The critical load Fc
and the corresponding value G∗ depend on the crack geometry and the loading type
as well as on the R-curve.

The statements made above, can also be derived in a more formal manner. For this
purpose we assume that the system’s “total energy”Π∗ consist of the total potential
Π and the fracture surface energyΓ , i.e.,Π∗(a) = Π(a)+Γ (a) (cf. Section 4.6.4).
The equilibrium state of the system is characterized by the condition dΠ∗/da = 0.
With G = −dΠ/da andR = dΓ/da this corresponds to equation (4.133). Informa-
tion about the stability is provided by the second derivative. The equilibrium state
of the system is stable for d2Π∗/da2 > 0 while at d2Π∗/da2 = 0 the transition to
instability occurs. These are exactly the statements (4.134) and (4.135).

Stable crack growth can not only be investigated on the basis of the energy con-
cept. Because of the equivalence ofK , G, and J in linear fracture mechanics, it can
be done on the basis of any of these parameters.

In what follows, we will determine dG/da for the body depicted in Fig. 4.44
which contains a crack and is loaded via a spring by a given displacement uF .
With the compliances C(a) and CF of the body and spring, the following relations
between the acting force and the displacements hold:

F =
uF

C(a) + CF
, uP = CF =

C

C + CF
uF . (4.136)

Therefore, the potential is

Π =
1

2
FuP +

1

2
F (uF − uP ) =

1

2

u2
F

C(a) + CF
,

and by differentiation we obtain

G = −dΠ

da
=
u2
F

2

C′

(C + CF )2
, (4.137a)
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Fig. 4.44 Stability of crack growth

Solution. The compliance function for the DCB-test is

C(a) =
8

EB

(a
h

)3
, which has the value when a = a0 as C(a0) =

8

EB

(a0
h

)3
.

Denoting the �exibility of the loading device as CF = ξC(a0), where ξ is a dimensionless

parameter. The crack driving force is now

G =
u2F
2

C ′(a)

(C(a) + CF )2
=
u2F
2

C ′(a)

C(a0)2[(a/a0)3 + ξ]2
,

and has the treshold value

Gc = G(a0) =
u2F
2

C ′(a0)

(C(a0) + CF )2
=
u2F
2

C ′(a0)

C(a0)2(1 + ξ)2
.

Thus
G
Gc

=
C ′(a)/C ′(a0)(1 + ξ)2

[(a/a0)3 + ξ]2
=

(a/a0)
2(1 + ξ)2

[(a/a0)3 + ξ]2
.

Let us investigate the behaviour of this expression when a/a0 ≥ 1, and denote y = G/Gc and
x = a/a0, resulting in expression

y =
(1 + ξ)2x2

(x3 + ξ)2
,

dy

dx
=

(x3 + ξ)2(1 + ξ)2 · 2x− (1 + ξ)2x2 · 2(x3 + ξ) · 3x2
(x3 + ξ)2

.

The numerator of the derivative is

(1 + ξ)2(x3 + ξ)[2x(ξ − 2x3)].

If the derivative expression is negative when x > 1 we have to have

ξ − 2x3 < 0 from which ξ < 2x3,

thus ξ < 2. The loading device should not be more �exible than 2C(a0), if the R-curve is

shallow. In the following �gure the R-curve is drawn as a horizontal line. G/Gc-curves are
drawn with the values of ξ as ξ = 1, 2 ja 3.
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