RAK-33060 Fracture mechanics and fatigue

2. Exercise

1. A tip loaded cantilever I-beam has cracks at the clamped end. The cross-section can be considered as an ideal I-profile. In the web there is a crack of length $2 a_{\mathrm{w}}=2 t$ positioned symmetrically about the neutral axis. At the flange tips there are two symmetrically positioned cracks. How long ($a_{\mathrm{f}}=$?) these flange tip cracks should be in order to be more dangerous than the crack in the web? Thickness of the web is t and the flanges $3 t / 2$, respectively. The other dimensions are related as $L / h=10, h / t=50$ and $b=h / 2$. The fracture toughness in the mode II is $K_{\text {IIc }}=(\sqrt{3} / 2) K_{\text {Ic }}$, where $K_{\text {Ic }}$ is the mode I fracture toughness.
You can assume that the shear stresses are distributed uniformly in the web. As the cross-section is assumed to be an ideal I-section, the moment of inertia for the web can be neglected. The bending stresses can also be assumed to have a constant value in the flanges.
Tables of stress intensity factors are at the end of this paper.

2. Determine the stress intensity factor K_{I} for a penny-shaped crack of radius a in an infinite domain under uniaxial stress σ. Use the Griffith energy approach assuming that stresses are relaxed in a ball of radius a around the crack. Compare to the values you have found in the literature.

Figure: Bbanerje - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/User:Bbanerje
3. A thick plate containg a circular delamination crack is loaded by a point force according to figure (a). Determine the stress intensity factor K_{I} and decide the critical load for fracture if $K_{\text {Ic }}=200 \mathrm{MPam}^{1 / 2}, \beta=0.1, t=10 \mathrm{~cm}, a=20 \mathrm{~cm}$.
Hint. For a circular rigidly fixed plate according to figure (b) the displacement of the loading point due to a force is

$$
\Delta=\frac{3\left(1-\nu^{2}\right)}{4 \pi} \frac{P R^{2}}{E d^{3}}
$$

(b)

4. Consider a DCB-test (Double Cantilever Beam) in a flexible testing apparatus. Draw the dimensionless crack driving force $\mathcal{G} / \mathcal{G}_{\mathrm{c}}$ as a function of the dimensionless crack length a / a_{0} using different values of the flexibility ratio $C_{F} / C\left(a_{0}\right)$. How flexible has the testing machine to be to produce unstable crack growth for a materal which has a shallow (nearly constant) R-curve?

Gross, Seelig: Fracture Mechanics, figure 4.44.

	$\left\{\begin{array}{l}K_{I} \\ K_{I I}\end{array}\right\}=\left\{\begin{array}{c}\sigma \\ \tau\end{array}\right\} \sqrt{\pi a}$
	$\left\{\begin{array}{c}K_{I}^{ \pm} \\ K_{I I}^{ \pm}\end{array}\right\}=\left\{\begin{array}{c}P \\ Q\end{array}\right\} \frac{1}{\sqrt{\pi a}} \sqrt{\frac{a \pm b}{a \mp b}}$
	$\left\{\begin{array}{l}K_{I} \\ K_{I I}\end{array}\right\}=\left\{\begin{array}{c}\sigma \\ \tau\end{array}\right\} \sqrt{2 b \tan \frac{\pi a}{2 b}}$
	$\left\{\begin{array}{l}K_{I} \\ K_{I I}\end{array}\right\}=\left\{\begin{array}{l}P \\ Q\end{array}\right\} \frac{2}{\sqrt{2 \pi b}}$
	$K_{I}=1.1215 \sigma \sqrt{\pi a}$
$6 \underset{\underset{\sigma}{\sigma}-\underset{\substack{1 \\ 2 b \\ 1 \\ 1}}{\underset{\sim}{1} 2 a} \rightarrow \stackrel{\rightharpoonup}{\sigma}}{\rightarrow}$	$\begin{gathered} K_{I}=\sigma \sqrt{\pi a} F_{I}(a / b) \\ F_{I}=\frac{1-0.025(a / b)^{2}+0.06(a / b)^{4}}{\sqrt{\cos (\pi a / 2 b)}} \end{gathered}$

