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RAK-33060 Fracture mechanics and fatigue

2. Exercise

1. A tip loaded cantilever I-beam has cracks at the clamped end. The cross-section can be
considered as an ideal I-pro�le. In the web there is a crack of length 2aw = 2t positioned
symmetrically about the neutral axis. At the �ange tips there are two symmetrically
positioned cracks. How long (af =?) these �ange tip cracks should be in order to be
more dangerous than the crack in the web? Thickness of the web is t and the �anges
3t/2, respectively. The other dimensions are related as L/h = 10, h/t = 50 and b = h/2.
The fracture toughness in the mode II is KIIc = (

√
3/2)KIc, where KIc is the mode I

fracture toughness.

You can assume that the shear stresses are distributed uniformly in the web. As the
cross-section is assumed to be an ideal I-section, the moment of inertia for the web can
be neglected. The bending stresses can also be assumed to have a constant value in the
�anges.

Tables of stress intensity factors are at the end of this paper.
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2. Determine the stress intensity factor KI for a penny-shaped crack of radius a in an
in�nite domain under uniaxial stress σ. Use the Gri�th energy approach assuming that
stresses are relaxed in a ball of radius a around the crack. Compare to the values you
have found in the literature.

Figure: Bbanerje - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/wiki/User:Bbanerje
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3. A thick plate containg a circular delamination crack is loaded by a point force according
to �gure (a). Determine the stress intensity factor KI and decide the critical load for
fracture if KIc = 200 MPam1/2, β = 0.1, t = 10 cm, a = 20 cm.

Hint. For a circular rigidly �xed plate according to �gure (b) the displacement of the
loading point due to a force is

∆ =
3(1− ν2)

4π

PR2

Ed3
.

4. Consider a DCB-test (Double Cantilever Beam) in a �exible testing apparatus. Draw
the dimensionless crack driving force G/Gc as a function of the dimensionless crack
length a/a0 using di�erent values of the �exibility ratio CF /C(a0). How �exible has
the testing machine to be to produce unstable crack growth for a materal which has a
shallow (nearly constant) R-curve?
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is met. When the load is further increased, the equilibrium condition (4.133) is no
longer fulfilled and the crack starts to propagate dynamically. The critical load Fc
and the corresponding value G∗ depend on the crack geometry and the loading type
as well as on the R-curve.

The statements made above, can also be derived in a more formal manner. For this
purpose we assume that the system’s “total energy”Π∗ consist of the total potential
Π and the fracture surface energyΓ , i.e.,Π∗(a) = Π(a)+Γ (a) (cf. Section 4.6.4).
The equilibrium state of the system is characterized by the condition dΠ∗/da = 0.
With G = −dΠ/da andR = dΓ/da this corresponds to equation (4.133). Informa-
tion about the stability is provided by the second derivative. The equilibrium state
of the system is stable for d2Π∗/da2 > 0 while at d2Π∗/da2 = 0 the transition to
instability occurs. These are exactly the statements (4.134) and (4.135).

Stable crack growth can not only be investigated on the basis of the energy con-
cept. Because of the equivalence ofK , G, and J in linear fracture mechanics, it can
be done on the basis of any of these parameters.

In what follows, we will determine dG/da for the body depicted in Fig. 4.44
which contains a crack and is loaded via a spring by a given displacement uF .
With the compliances C(a) and CF of the body and spring, the following relations
between the acting force and the displacements hold:

F =
uF

C(a) + CF
, uP = CF =

C

C + CF
uF . (4.136)

Therefore, the potential is

Π =
1

2
FuP +

1

2
F (uF − uP ) =

1

2

u2
F

C(a) + CF
,

and by differentiation we obtain

G = −dΠ

da
=
u2
F

2

C′

(C + CF )2
, (4.137a)

uP

F

CF

P

uF

a
C(a)

Fig. 4.44 Stability of crack growthGross, Seelig: Fracture Mechanics, �gure 4.44.
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Table 4.1 K-factors

σσ

2a

Q
P

Q
P

b

a

σ

σ

2b 2a

P

b P

τ

τ

2a

2b

σ

τ

σ

τ 2a

σ

Q

Q

σ

1

{
KI
KII

}
=

{
σ
τ

}√
πa

2

{
K±
I

K±
II

}
=

{
P
Q

}
1√
πa

√
a± b
a∓ b

3

{
KI
KII

}
=

{
σ
τ

}√
2b tan

πa

2b

4

{
KI
KII

}
=

{
P
Q

}
2√
2πb

5 KI = 1.1215 σ
√
πa

6

KI = σ
√
πa FI(a/b)

FI =
1 − 0.025(a/b)2 + 0.06(a/b)4√

cos (πa/2b)


