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RAK-33060 Fracture mechanics and fatigue

1. Exercise

Problem 1. Consider the theoretical strength of a crystalline solid where the atoms are
arranged into a regular cubic lattice with distance of d0 between the neighbouring atom
layers. The bonding force between two atoms can be obtained as F = −dΨ/dr where the
following Lennart-Jones potential is adopted

Ψ = −A
(
d0
r

)6

+B

(
d0
r

)12

.

The �rst terms represents attractive forces, while the second term describes repulsive ones.
Determine the expression for the cohesive strength σc. The stress could be de�ned as

σ = − F
d20
.

Strain ε can be de�ned naturally as

ε =
x

d0
=
r − d0
d0

,

where x is the distance from the equilibrium position. Determine also the expression for the
surface energy γ0

2γ0 =

∫ ∞

0
σ dx.

What are the values obtained for σc and γ0 if the Young's modulus has the value E = 210
GPa and the distance between the atomic layers is d0 = 2.5 · 10−10 m.

52 3 Micro and macro phenomena of fracture

During the release of bonds, i.e., the separation of elements, a negative material-
specific workWB is done by the bonding force. As a consequence of separation, for
instance in a perfect crystal, the lattice geometry changes in the immediate neighbor-
hood of the newly created surface. This change is confined to a few lattice spacings
into the bulk. If dissipative processes are neglected and the material is, from the
macroscopic point of view, considered as a continuum, the work of bonding forces
is transferred into surface energy of the body (i.e., the energy stored at the body’s
surface). It is defined as

Γ 0 = γ0A (3.2)

where A is the newly created surface and γ0 is the surface energy density.
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Fig. 3.1 Theoretical strength

In what follows, we consider in a somewhat simplified manner the separation
process of two atomic lattice planes of a crystal. For the separation stress σ(x)
we assume a dependence on the separation displacement x similar to the bond-
ing force (Fig. 3.1b). In the tensile regime it can be approximated by the relation
σc sin (πx/a). For small displacements x this leads to σ ≈ σcπx/a. Equating the
latter with Hooke’s law σ = Eε = Ex/d0 yields for the so-called theoretical
strength, i.e., the cohesive stress that has to be overcome during separation

σc ≈ E a

πd0
. (3.3)

If we further assume that the bonds are completely broken for a ≈ d0 we obtain the
rough estimate

σc ≈ E

π
. (3.4)

From the work of stresses in conjunction with the foregoing assumptions the
surface energy γ0 can be determined. Taking into account that two new surfaces are
created during separation we get

2γ0 =

∞∫

0

σ(x)dx ≈
a∫

0

σc sin
πx

a
dx = σc

2a

π
. (3.5)

Solution. First we have to form the expression for the force. The unknown coe�cients A
and B can be solved from the following two conditions:

1. at equilibrium r = d0, the force vanishes and
2. also the tangent of the stress-deformation relationship is the Young's modulus, i.e.

E =
dσ

dε

∣∣∣∣
ε=0

. (1)

The expression for the force F is

F = −dψ

dr
= −6A

d60
r7

+ 12B
d120
r13

.

From the equilibrium condition F (d0) = 0 we get A = 2B. Expression for the stress is now

σ = − F
d20

= 12B

(
d40
r7
− d100
r13

)
.
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Strain is

ε =
r − d0
d0

, thus dε =
dr

d0
.

The coe�cient B is obtained from condition

E =
dσ

dε

∣∣∣∣
ε=0

=
dσ

dr

dr

dε

∣∣∣∣
r=d0

= d0
dσ

dr

∣∣∣∣
r=d0

(2)

= 12Bd0

(
−7

d40
r8

+ 12
d100
r14

) ∣∣∣∣
r=d0

= 72
B

d30
,

from which the solution is B = Ed30/72. The necessary condition for the existence of a
maximum in the stress-strain relationship is

dσ

dε
= 0, which is equivalent to the condition

dσ

dr
= 0.

From equation (2) we get

dσ

dr
= −7

d40
r8

+ 13
d100
r14

= 0, from which rc = (13/7)1/6 d0.

Substituting this into the expression of the stress, we get

σc =
1

6
E
[
(7/13)7/6 − (7/13)13/6

]
≈ 0, 037E.

The expression for the stress is thus

σ(r) =
1

6
E

[(
d0
r

)7

−
(
d0
r

)13
]
.

The surface energy γ0 is obtained by integrating the work done by the stress

γ0 =
1

2

∫ ∞

0
σ dx =

1

2

∫ ∞

d0

σ dr =
E

12

∣∣∣∣
∞

d0

(
− d70

6r6
+

d130
12r12

)
=

1

144
Ed0 ≈ 0, 007Ed0.

After substituting the values of E and d0 we get the surface energy value 0.4 J/m2. A typical
value for iron is 2.2�2.8 J/m2.

Problem 2. A two dimensional �nite element analysis has been performed for a plate with
a crack. The material is linearly isotropic elastic. In front of one of the crack tips the results
shown in the table were obtained. Estimate the stress-intensity factors for this crack tip.

point x [mm] y [mm] σx [MPa] σy [MPa] τxy [MPa]

1 0.10 0.0 1714.1 1712.1 1076.3
2 0.35 0.0 916.9 917.2 574.8
3 0.70 0.0 647.3 649.4 408.5
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Solution. The K-dominated stress �eld is

σx = σy =
KI√
2πr

, τxy =
KII√
2πr

.

We can estimate the stress intensity factor by the least-squares method (LSM). The LSM
error functions are

E1(KI) =
1

2

3∑

i=1

[(
KI√
2πri

− σx(ri)

)2

+

(
KI√
2πri

− σy(ri)

)2
]

and

E2(KII) =
1

2

3∑

i=1

(
KII√
2πri

− τxy(ri)

)2

.

For the existence of a minimum, the derivatives have to vanish, i.e.

dE1

dKI
= 0, and

dE1

dKII
= 0.

This results in equations

3∑

i=1

1

πri
KI =

3∑

i=1

1√
2πri

(σx(ri) + σy(ri)), (3)

3∑

i=1

1

2πri
KII =

3∑

i=1

1√
2πri

τxy(ri). (4)

Substituting the values and solving we get the values KI = 42.96 MPa
√
m and KII =

26.985 MPa
√
m.

The stress intensity factors can also be determined by extrapolation.

point KI = σy
√

2πr [MPa
√
m] KI = σx

√
2πr [MPa

√
m] KII = τxy

√
2πr [MPa

√
m]

1 42.92 42.97 26.97
2 43.01 42.99 26.96
3 43.06 42.92 27.09

Carry out the extrapolation to r = 0 and compare to the least-squares method!

Problem 3. In which direction θ is the largest shear stress found ar the tip of a crack
loaded in mode III? The material is linear, isotropically elastic. Stress �eld in the vicinity of
the crack tip is

τzx = − KIII√
2πr

sin 1
2θ, τzy = − KIII√

2πr
cos 1

2θ,

and the other stress components vanish.

Solution. The resulting shear stress is

τ =
√
τ2zx + τ2zy =

1√
2πr

KIII, i.e. independent of the direction.



RAK-33060 Fracture mechanics and fatigue - 1. Exercise solutions 4

Problem 4. Calculate and sketch the distribution of the Tresca e�ective stress around a
crack tip loaded in mode I. The material is isotropic and linearly elastic with ν = 0.3. The
stress components in the Cartesian coordinate system are

σx =
KI√
2πr

[
cos 1

2θ
(
1− sin 1

2θ sin 3
2θ
)]
,

σy =
KI√
2πr

[
cos 1

2θ
(
1 + sin 1

2θ sin 3
2θ
)]
,

τxy =
KI√
2πr

(
cos 1

2θ sin 1
2θ cos 3

2θ
)
, τzy = τzx = 0.

Consider both plane stress σz = 0 and plane strain σz = ν(σx + σy).
The Tresca e�ective stress is

σe = max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|),

where σ1, σ2 and σ3 are the principal stresses.

Solution. Both in plane stress and plane strain the stress in the z-direction (normal to the
plane) is a principal stress (zero in plane stress). The in-plane principal stresses are obtained
from the eigenvalue problem

(
σx − σi τxy
τxy σy − σi

)(
n1
n2

)
=

(
0
0

)
,

which results in

σi =
1

2
(σx + σy)± 1

2

√
(σx − σy)2 + 4τ2xy

=
KI√
2πr

(
cos 1

2θ ±
√

(− cos 1
2θ sin 1

2θ sin 3
2θ)

2 + (cos 1
2θ sin 1

2θ cos 3
2θ)

2

)

=
KI√
2πr

(
1± sin 1

2θ
)

cos 1
2θ.

Both the σ1 ≥ σ2 ≥ 0.
In plane stress the Tresca e�ective stress is thus

σe = σ1 =
KI√
2πr

(
1 + sin 1

2θ
)

cos 1
2θ.

Denoting f(θ) =
(
1 + sin 1

2θ
)

cos 1
2θ, the maximum is obtained when f ′ = 0, resulting in

equation
cos 2θ = sin 1

2θ,

which has a solution θ = π/3 = 60◦.


