RAK-33060 Fracture mechanics and fatigue

1. Exercise

Problem 1. Consider the theoretical strength of a crystalline solid where the atoms are arranged into a regular cubic lattice with distance of d_{0} between the neighbouring atom layers. The bonding force between two atoms can be obtained as $F=-\mathrm{d} \Psi / \mathrm{d} r$ where the following Lennart-Jones potential is adopted

$$
\Psi=-A\left(\frac{d_{0}}{r}\right)^{6}+B\left(\frac{d_{0}}{r}\right)^{12}
$$

The first terms represents attractive forces, while the second term describes repulsive ones. Determine the expression for the cohesive strength σ_{c}. The stress could be defined as

$$
\sigma=-\frac{F}{d_{0}^{2}}
$$

Strain ε can be defined naturally as

$$
\varepsilon=\frac{x}{d_{0}}=\frac{r-d_{0}}{d_{0}}
$$

where x is the distance from the equilibrium position. Determine also the expression for the surface energy γ_{0}

$$
2 \gamma_{0}=\int_{0}^{\infty} \sigma \mathrm{d} x
$$

What are the values obtained for σ_{c} and γ_{0} if the Young's modulus has the value $E=210$ GPa and the distance between the atomic layers is $d_{0}=2.5 \cdot 10^{-10} \mathrm{~m}$.

Solution. First we have to form the expression for the force. The unknown coefficients A and B can be solved from the following two conditions:

1. at equilibrium $r=d_{0}$, the force vanishes and
2. also the tangent of the stress-deformation relationship is the Young's modulus, i.e.

$$
\begin{equation*}
E=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \tag{1}
\end{equation*}
$$

The expression for the force F is

$$
F=-\frac{\mathrm{d} \psi}{\mathrm{~d} r}=-6 A \frac{d_{0}^{6}}{r^{7}}+12 B \frac{d_{0}^{12}}{r^{13}}
$$

From the equilibrium condition $F\left(d_{0}\right)=0$ we get $A=2 B$. Expression for the stress is now

$$
\sigma=-\frac{F}{d_{0}^{2}}=12 B\left(\frac{d_{0}^{4}}{r^{7}}-\frac{d_{0}^{10}}{r^{13}}\right) .
$$

Strain is

$$
\varepsilon=\frac{r-d_{0}}{d_{0}}, \quad \text { thus } \quad \mathrm{d} \varepsilon=\frac{\mathrm{d} r}{d_{0}}
$$

The coefficient B is obtained from condition

$$
\begin{align*}
E & =\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0}=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} r} \frac{\mathrm{~d} r}{\mathrm{~d} \varepsilon}\right|_{r=d_{0}}=\left.d_{0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} r}\right|_{r=d_{0}} \tag{2}\\
& =\left.12 B d_{0}\left(-7 \frac{d_{0}^{4}}{r^{8}}+12 \frac{d_{0}^{10}}{r^{14}}\right)\right|_{r=d_{0}}=72 \frac{B}{d_{0}^{3}},
\end{align*}
$$

from which the solution is $B=E d_{0}^{3} / 72$. The necessary condition for the existence of a maximum in the stress-strain relationship is

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \varepsilon}=0, \quad \text { which is equivalent to the condition } \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} r}=0
$$

From equation (2) we get

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} r}=-7 \frac{d_{0}^{4}}{r^{8}}+13 \frac{d_{0}^{10}}{r^{14}}=0, \quad \text { from which } \quad r_{\mathrm{c}}=(13 / 7)^{1 / 6} d_{0}
$$

Substituting this into the expression of the stress, we get

$$
\sigma_{\mathrm{c}}=\frac{1}{6} E\left[(7 / 13)^{7 / 6}-(7 / 13)^{13 / 6}\right] \approx 0,037 E
$$

The expression for the stress is thus

$$
\sigma(r)=\frac{1}{6} E\left[\left(\frac{d_{0}}{r}\right)^{7}-\left(\frac{d_{0}}{r}\right)^{13}\right]
$$

The surface energy γ_{0} is obtained by integrating the work done by the stress

$$
\gamma_{0}=\frac{1}{2} \int_{0}^{\infty} \sigma \mathrm{d} x=\frac{1}{2} \int_{d_{0}}^{\infty} \sigma \mathrm{d} r=\left.\frac{E}{12}\right|_{d_{0}} ^{\infty}\left(-\frac{d_{0}^{7}}{6 r^{6}}+\frac{d_{0}^{13}}{12 r^{12}}\right)=\frac{1}{144} E d_{0} \approx 0,007 E d_{0}
$$

After substituting the values of E and d_{0} we get the surface energy value $0.4 \mathrm{~J} / \mathrm{m}^{2}$. A typical value for iron is $2.2-2.8 \mathrm{~J} / \mathrm{m}^{2}$.

Problem 2. A two dimensional finite element analysis has been performed for a plate with a crack. The material is linearly isotropic elastic. In front of one of the crack tips the results shown in the table were obtained. Estimate the stress-intensity factors for this crack tip.

point	$x[\mathrm{~mm}]$	$y[\mathrm{~mm}]$	$\sigma_{x}[\mathrm{MPa}]$	$\sigma_{y}[\mathrm{MPa}]$	$\tau_{x y}[\mathrm{MPa}]$
1	0.10	0.0	1714.1	1712.1	1076.3
2	0.35	0.0	916.9	917.2	574.8
3	0.70	0.0	647.3	649.4	408.5

Solution. The K-dominated stress field is

$$
\sigma_{x}=\sigma_{y}=\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}, \quad \tau_{x y}=\frac{K_{\mathrm{II}}}{\sqrt{2 \pi r}}
$$

We can estimate the stress intensity factor by the least-squares method (LSM). The LSM error functions are

$$
E_{1}\left(K_{\mathrm{I}}\right)=\frac{1}{2} \sum_{i=1}^{3}\left[\left(\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r_{i}}}-\sigma_{x}\left(r_{i}\right)\right)^{2}+\left(\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r_{i}}}-\sigma_{y}\left(r_{i}\right)\right)^{2}\right]
$$

and

$$
E_{2}\left(K_{\mathrm{II}}\right)=\frac{1}{2} \sum_{i=1}^{3}\left(\frac{K_{\mathrm{II}}}{\sqrt{2 \pi r_{i}}}-\tau_{x y}\left(r_{i}\right)\right)^{2}
$$

For the existence of a minimum, the derivatives have to vanish, i.e.

$$
\frac{\mathrm{d} E_{1}}{\mathrm{~d} K_{\mathrm{I}}}=0, \quad \text { and } \quad \frac{\mathrm{d} E_{1}}{\mathrm{~d} K_{\mathrm{II}}}=0
$$

This results in equations

$$
\begin{align*}
\sum_{i=1}^{3} \frac{1}{\pi r_{i}} K_{\mathrm{I}} & =\sum_{i=1}^{3} \frac{1}{\sqrt{2 \pi r_{i}}}\left(\sigma_{x}\left(r_{i}\right)+\sigma_{y}\left(r_{i}\right)\right) \tag{3}\\
\sum_{i=1}^{3} \frac{1}{2 \pi r_{i}} K_{\mathrm{II}} & =\sum_{i=1}^{3} \frac{1}{\sqrt{2 \pi r_{i}}} \tau_{x y}\left(r_{i}\right) \tag{4}
\end{align*}
$$

Substituting the values and solving we get the values $K_{\mathrm{I}}=42.96 \mathrm{MPa} \sqrt{\mathrm{m}}$ and $K_{\mathrm{II}}=$ $26.985 \mathrm{MPa} \sqrt{\mathrm{m}}$.

The stress intensity factors can also be determined by extrapolation.

point	$K_{\mathrm{I}}=\sigma_{y} \sqrt{2 \pi r}[\mathrm{MPa} \sqrt{\mathrm{m}}]$	$K_{\mathrm{I}}=\sigma_{x} \sqrt{2 \pi r}[\mathrm{MPa} \sqrt{\mathrm{m}]}$	$K_{\mathrm{II}}=\tau_{x y} \sqrt{2 \pi r}[\mathrm{MPa} \sqrt{\mathrm{m}]}$
1	42.92	42.97	26.97
2	43.01	42.99	26.96
3	43.06	42.92	27.09

Carry out the extrapolation to $r=0$ and compare to the least-squares method!

Problem 3. In which direction θ is the largest shear stress found ar the tip of a crack loaded in mode III? The material is linear, isotropically elastic. Stress field in the vicinity of the crack tip is

$$
\tau_{z x}=-\frac{K_{\mathrm{III}}}{\sqrt{2 \pi r}} \sin \frac{1}{2} \theta, \quad \tau_{z y}=-\frac{K_{\mathrm{III}}}{\sqrt{2 \pi r}} \cos \frac{1}{2} \theta
$$

and the other stress components vanish.

Solution. The resulting shear stress is

$$
\tau=\sqrt{\tau_{z x}^{2}+\tau_{z y}^{2}}=\frac{1}{\sqrt{2 \pi r}} K_{\mathrm{III}}, \quad \text { i.e. independent of the direction. }
$$

Problem 4. Calculate and sketch the distribution of the Tresca effective stress around a crack tip loaded in mode I. The material is isotropic and linearly elastic with $\nu=0.3$. The stress components in the Cartesian coordinate system are

$$
\begin{aligned}
\sigma_{x} & =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left[\cos \frac{1}{2} \theta\left(1-\sin \frac{1}{2} \theta \sin \frac{3}{2} \theta\right)\right], \\
\sigma_{y} & =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left[\cos \frac{1}{2} \theta\left(1+\sin \frac{1}{2} \theta \sin \frac{3}{2} \theta\right)\right], \\
\tau_{x y} & =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left(\cos \frac{1}{2} \theta \sin \frac{1}{2} \theta \cos \frac{3}{2} \theta\right), \quad \tau_{z y}=\tau_{z x}=0 .
\end{aligned}
$$

Consider both plane stress $\sigma_{z}=0$ and plane strain $\sigma_{z}=\nu\left(\sigma_{x}+\sigma_{y}\right)$.
The Tresca effective stress is

$$
\sigma_{\mathrm{e}}=\max \left(\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right),
$$

where σ_{1}, σ_{2} and σ_{3} are the principal stresses.
Solution. Both in plane stress and plane strain the stress in the z-direction (normal to the plane) is a principal stress (zero in plane stress). The in-plane principal stresses are obtained from the eigenvalue problem

$$
\left(\begin{array}{cc}
\sigma_{x}-\sigma_{i} & \tau_{x y} \\
\tau_{x y} & \sigma_{y}-\sigma_{i}
\end{array}\right)\binom{n_{1}}{n_{2}}=\binom{0}{0}
$$

which results in

$$
\begin{aligned}
\sigma_{i} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right) \pm \frac{1}{2} \sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \tau_{x y}^{2}} \\
& =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left(\cos \frac{1}{2} \theta \pm \sqrt{\left(-\cos \frac{1}{2} \theta \sin \frac{1}{2} \theta \sin \frac{3}{2} \theta\right)^{2}+\left(\cos \frac{1}{2} \theta \sin \frac{1}{2} \theta \cos \frac{3}{2} \theta\right)^{2}}\right) \\
& =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left(1 \pm \sin \frac{1}{2} \theta\right) \cos \frac{1}{2} \theta .
\end{aligned}
$$

Both the $\sigma_{1} \geq \sigma_{2} \geq 0$.
In plane stress the Tresca effective stress is thus

$$
\sigma_{\mathrm{e}}=\sigma_{1}=\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left(1+\sin \frac{1}{2} \theta\right) \cos \frac{1}{2} \theta .
$$

Denoting $f(\theta)=\left(1+\sin \frac{1}{2} \theta\right) \cos \frac{1}{2} \theta$, the maximum is obtained when $f^{\prime}=0$, resulting in equation

$$
\cos 2 \theta=\sin \frac{1}{2} \theta
$$

which has a solution $\theta=\pi / 3=60^{\circ}$.

