## RAK-33060 Fracture mechanics and fatigue

## 1. Exercise

1. Consider the theoretical strength of a crystalline solid where the atoms are arranged into a regular cubic lattice with distance of $d_{0}$ between the neighbouring atom layers. The bonding force between two atoms can be obtained as $F=-\mathrm{d} \Psi / \mathrm{d} r$ where the following Lennart-Jones potential is adopted

$$
\Psi=-A\left(\frac{d_{0}}{r}\right)^{6}+B\left(\frac{d_{0}}{r}\right)^{12} .
$$

The first terms represents attractive forces, while the second term describes repulsive ones. Determine the expression for the cohesive strength $\sigma_{\mathrm{c}}$. The stress could be defined as

$$
\sigma=-\frac{F}{d_{0}^{2}}
$$

Strain $\varepsilon$ can be defined naturally as

$$
\varepsilon=\frac{x}{d_{0}}=\frac{r-d_{0}}{d_{0}},
$$

where $x$ is the distance from the equilibrium position. Determine also the expression for the surface energy $\gamma_{0}$

$$
2 \gamma_{0}=\int_{0}^{\infty} \sigma \mathrm{d} x .
$$

What are the values obtained for $\sigma_{\mathrm{c}}$ and $\gamma_{0}$ if the Young's modulus has the value $E=210$ GPa and the distance between the atomic layers is $d_{0}=2.5 \cdot 10^{-10} \mathrm{~m}$.

2. A two dimensional finite element analysis has been performed for a plate with a crack. The material is linearly isotropic elastic. In front of one of the crack tips the results shown in the table were obtained. Estimate the stress-intensity factors for this crack tip.


| point | $x[\mathrm{~mm}]$ | $y[\mathrm{~mm}]$ | $\sigma_{x}[\mathrm{MPa}]$ | $\sigma_{y}[\mathrm{MPa}]$ | $\tau_{x y}[\mathrm{MPa}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.10 | 0.0 | 1714.1 | 1712.1 | 1076.3 |
| 2 | 0.35 | 0.0 | 916.9 | 917.2 | 574.8 |
| 3 | 0.70 | 0.0 | 647.3 | 649.4 | 408.5 |

3. In which direction $\theta$ is the largest shear stress found ar the tip of a crack loaded in mode III? The material is linear, isotropically elastic. Stress field in the vicinity of the crack tip is

$$
\tau_{z x}=-\frac{K_{\mathrm{III}}}{\sqrt{2 \pi r}} \sin \frac{1}{2} \theta, \quad \tau_{z y}=-\frac{K_{\mathrm{III}}}{\sqrt{2 \pi r}} \cos \frac{1}{2} \theta
$$

and the other stress components vanish.
4. Calculate and sketch the distribution of the Tresca effective stress around a crack tip loaded in mode I. The material is isotropic and linearly elastic with $\nu=0.3$. The stress components in the Cartesian coordinate system are

$$
\begin{aligned}
\sigma_{x} & =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left[\cos \frac{1}{2} \theta\left(1-\sin \frac{1}{2} \theta \sin \frac{3}{2} \theta\right)\right] \\
\sigma_{y} & =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left[\cos \frac{1}{2} \theta\left(1+\sin \frac{1}{2} \theta \sin \frac{3}{2} \theta\right)\right] \\
\tau_{x y} & =\frac{K_{\mathrm{I}}}{\sqrt{2 \pi r}}\left(\cos \frac{1}{2} \theta \sin \frac{1}{2} \theta \cos \frac{3}{2} \theta\right), \quad \tau_{z y}=\tau_{z x}=0
\end{aligned}
$$

Consider both plane stress $\sigma_{z}=0$ and plane strain $\sigma_{z}=\nu\left(\sigma_{x}+\sigma_{y}\right)$.
The Tresca effective stress is

$$
\sigma_{\mathrm{e}}=\max \left(\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right)
$$

where $\sigma_{1}, \sigma_{2}$ and $\sigma_{3}$ are the principal stresses.

