RAK-33060 Fracture mechanics and fatigue

1. Exercise

1. Consider the theoretical strength of a crystalline solid where the atoms are arranged into a regular cubic lattice with distance of d_0 between the neighbouring atom layers. The bonding force between two atoms can be obtained as $F = -d\Psi/dr$ where the following Lennart-Jones potential is adopted

$$\Psi = -A\left(\frac{d_0}{r}\right)^6 + B\left(\frac{d_0}{r}\right)^{12}.$$

The first terms represents attractive forces, while the second term describes repulsive ones. Determine the expression for the cohesive strength σ_c . The stress could be defined as

$$\sigma = -\frac{F}{d_0^2}$$

Strain ε can be defined naturally as

$$\varepsilon = \frac{x}{d_0} = \frac{r - d_0}{d_0},$$

where x is the distance from the equilibrium position. Determine also the expression for the surface energy γ_0

$$2\gamma_0 = \int_0^\infty \sigma \,\mathrm{d}x.$$

What are the values obtained for σ_c and γ_0 if the Young's modulus has the value E = 210 GPa and the distance between the atomic layers is $d_0 = 2.5 \cdot 10^{-10}$ m.

2. A two dimensional finite element analysis has been performed for a plate with a crack. The material is linearly isotropic elastic. In front of one of the crack tips the results shown in the table were obtained. Estimate the stress-intensity factors for this crack tip.

$\begin{array}{c} & \mathbf{y} \\ \mathbf{x} \mathbf{x} \mathbf{x} \\ 1 \ 2 \ 3 \end{array} $					
point	$x \; [\mathrm{mm}]$	$y \; [mm]$	σ_x [MPa]	σ_y [MPa]	τ_{xy} [MPa]
1	0.10	0.0	1714.1	1712.1	1076.3
2	0.35	0.0	916.9	917.2	574.8
3	0.70	0.0	647.3	649.4	408.5

3. In which direction θ is the largest shear stress found at the tip of a crack loaded in mode III? The material is linear, isotropically elastic. Stress field in the vicinity of the crack tip is

$$\tau_{zx} = -\frac{K_{\text{III}}}{\sqrt{2\pi r}} \sin \frac{1}{2}\theta, \quad \tau_{zy} = -\frac{K_{\text{III}}}{\sqrt{2\pi r}} \cos \frac{1}{2}\theta,$$

and the other stress components vanish.

4. Calculate and sketch the distribution of the Tresca effective stress around a crack tip loaded in mode I. The material is isotropic and linearly elastic with $\nu = 0.3$. The stress components in the Cartesian coordinate system are

$$\sigma_x = \frac{K_{\rm I}}{\sqrt{2\pi r}} \left[\cos \frac{1}{2}\theta \left(1 - \sin \frac{1}{2}\theta \sin \frac{3}{2}\theta \right) \right],$$

$$\sigma_y = \frac{K_{\rm I}}{\sqrt{2\pi r}} \left[\cos \frac{1}{2}\theta \left(1 + \sin \frac{1}{2}\theta \sin \frac{3}{2}\theta \right) \right],$$

$$\tau_{xy} = \frac{K_{\rm I}}{\sqrt{2\pi r}} \left(\cos \frac{1}{2}\theta \sin \frac{1}{2}\theta \cos \frac{3}{2}\theta \right), \quad \tau_{zy} = \tau_{zx} = 0$$

Consider both plane stress $\sigma_z = 0$ and plane strain $\sigma_z = \nu(\sigma_x + \sigma_y)$. The Tresca effective stress is

$$\sigma_{\mathrm{e}} = \max(|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|),$$

where σ_1, σ_2 and σ_3 are the principal stresses.