Continuum mechanics

8. exercise – continuum thermodynamics, Legendre transformation

1. Derive the local energy equation for a heat conducting magneto-electro-mechanical body. Start with the global energy equation

\[\dot{K} + \dot{U} = P_{\text{mech}} + P_{\text{heat}} + P_{\text{em}}, \]

(1)

where \(K \) is the kinetic energy, \(U \) the internal energy, \(P_{\text{mech}} \), \(P_{\text{heat}} \) and \(P_{\text{em}} \) are the powers of mechanical, heat and electro-magnetic energy inputs, respectively. The electro-magnetic energy input to the system can be assumed to be

\[P_{\text{em}} = - \oint_{\partial V} E \times H \, dV, \]

where \(E \) and \(H \) are the electric and magnetic field strengths, respectively. The Faraday and Ampère laws in the global form are

\[\oint_{\partial A} E \cdot ds = - \frac{\partial}{\partial t} \int_A B \cdot dA, \]

(2)

\[\oint_{\partial A} H \cdot ds = \frac{\partial}{\partial t} \int_A D \cdot dA + \int_A J \cdot dA, \]

(3)

and the corresponding local forms are

\[\text{curl} \, E = - \frac{\partial B}{\partial t}, \]

(4)

\[\text{curl} \, H = J + \frac{\partial D}{\partial t}, \]

(5)

where \(B \) is the magnetic flux density (or magnetic induction), \(J \) is the current density, \(D \) the electric flux density and \(dA \) is differential oriented area, \(ds \) differential line element.

Derive also the Clausius-Duhem inequality.

Solution:

\[K = \int \frac{1}{2} v^2 \, dm = \int \frac{1}{2} \rho v^2 \, dV \quad \dot{K} = \int \rho \dot{v} \, dV, \]

\[U = \int edm = \int \rho e \, dV \quad \dot{U} = \int \rho \dot{e} \, dV \]

\[P_{\text{mech}} = P_{\text{surface traction}} + P_{\text{Body Force}} = \int v \cdot t \, dA + \int v \cdot b \, dV \]

\[P_{\text{heat}} = P_{\text{Internal heat}} - P_{\text{Surface heat}} = \int \rho r \, dV - \oint q \cdot n \, dA \]

\[P_{\text{em}} = - \oint_{\partial V} E \times H \, dV, \]

\footnote{In the study book \(P_{\text{mech}} \) and \(P_{\text{heat}} \) are denoted as \(P_{\text{ext}} \) and \(R \).}
According to the divergence theorem:
\[\oint_S (F \cdot n) dS = \int_V (\text{div} F) dV \]

Therefore by replacing above values in equation (1):
\[\int [\rho v \dot{v} + \rho \dot{e} - \text{div} \sigma - \rho b v - \rho r + \text{div} q + \text{div}(E \times H)] dV = 0 \]

(Note1: \(\text{div} \sigma = v \text{div} \sigma + \text{grad} : \sigma \))
\[\int [u.(\rho v - \text{div} \sigma - \rho b) + \rho \dot{e} - \text{grad} : \sigma - \rho r + \text{div} q + \text{div}(E \times H)] dV = 0 \]

(Note2: \(\rho v - \text{div} \sigma - \rho b = 0 \))
(Note3: \(\text{div}(E \times H) = H \text{curl} E - E \text{curl} H = H (-\dot{B}) - E (J + \dot{D}) \))

Therefore, first thermodynamic law:
\[\rho \dot{e} = \text{grad} : \sigma + \rho r - \text{div} q + E (J + \dot{D}) + H \cdot \dot{B} \]

Second thermodynamic law:
\[\dot{S} \geq \int \frac{\rho r}{\theta} dV - \oint \frac{q \cdot n}{\theta} dA \]

Therefore:
\[\int \rho \dot{s} dV - \int \frac{\rho r}{\theta} dV + \int \text{div} \left(\frac{q}{\theta} \right) dV \geq 0 \]
\[= \int \left(\rho \dot{s} - \frac{\rho r}{\theta} + \frac{1}{\theta^2} \text{div} q - \frac{1}{\theta^2} q \cdot \text{grad} \theta \right) dV \geq 0 \]

Then:
\[\rho \dot{s} - \frac{1}{\theta} (\rho r - \text{div} q) - \frac{1}{\theta^2} q \cdot \text{grad} \theta \geq 0 \]

2. Determine the Legendre-Fenchel dual funktion \(g(y) \) for the following functions:
 (a) \(f(x) = \frac{1}{4} x^4 \),
 (b) \(f(x) = k |x| \).

Show that the dual functions \(g(y) \) are convex. The Legendre-Fenchel dual function is defined as
\[g(y) = \sup_{x \in \mathbb{R}} [yx - f(x)] . \]

Solution:
(a)
\[f(x) = \frac{1}{4} x^4 \rightarrow \frac{\partial (xy - \frac{1}{4} x^4)}{\partial x} = 0 \rightarrow y = x^3 \rightarrow x = \sqrt[3]{y} \]
Thus:

\[g(y) = \frac{3}{4} y^\frac{4}{3} \]

In order to \(g(y) \) be convex; \(g''(y) \geq 0 \)

\[g''(y) = \frac{1}{3\sqrt[3]{y^2}} > 0 \]

(b)
We can consider this \(f(x) \) function in two different cases:
If \(x > 0 \):

\[f(x) = kx \rightarrow \frac{\partial(xy - kx)}{\partial x} = 0 \rightarrow y = k \]

\[g(y) = kx - kx = 0 \rightarrow g''(y) \geq 0 \]

If \(x < 0 \):

\[f(x) = -kx \rightarrow \frac{\partial(xy + kx)}{\partial x} = 0 \rightarrow y = -k \]

\[g(y) = -kx + kx = 0 \rightarrow g''(y) \geq 0 \]