
Stability of structures

9. exercise – buckling of plates

Problem 1. A square plate is stiffened by equidistant beams of rectangular
cross-section in the loading direction. How many stiffeners are required to
obtain a buckling load Nx at least the value 10π2D

a2
. Thickness of the plate is

h, which is also the width of the beam. The height of the beams is αh = 4h.
The material is isotropic with Poisson’s ratio 0.3. Use the energy method
and a one-parametric trial function for the deflection w(x, y). The plate is
simply supported and the torsional stiffness of the beams need not to be
taken into account. h = a/40, where a is the side-length of the plate.
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Solution. Let us use the following trial function to the deflection

w(x, y) = w0 sin
πx

a
sin

πy

a

Expression for the total potential energy of the plate is

∆Π = ∆U +∆V = ∆Uplate +∆Ubeams +∆Vplate +∆Vbeams

∆Uplate =
D

2

∫

A

(∆w)2dA

∆w = w,xx + w,yy, and w,xx = −w0

π2

a2
sin

πx

a
sin

πy

a
= w,yy

⇒ ∆Uplate =
D

2

π4
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w2
0

∆Vplate = −
Nx

2

∫

A

w2
,xdA = −

Nx

2

π2

4
w2
0

∆Ubeams =

n
∑

i=1

EI

2

a
∫

0

w2
,xxdx =

EI

4

π4

a3
w2
0

∑

sin2
πi

n+ 1
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∆Vbeams = −
n
∑

i=1

σxhαh

2

a
∫

0

w2
,xdx, where σxh = Nx

= −
Nx

4
α
h

a
w2
0π

2
∑

sin2
πi

n+ 1

⇒ ∆Π =

[

D

2

π4

a2
−

Nx

2

π2

4
+

EI

4

π4

a3

∑

sin2
πi
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−

Nx

4
α
h

a
π2
∑

sin2
πi
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]

w2
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When computing the ∆Vpalkit term, it is assumed that the load Nx is equally
distributed for the cross-sectional area of the beam. Using the notation

Nx = λ
π2Eh3

12a2
, I =

α3h4

12
, D =

Eh3

12
, when ν = 0

In the example case α = 4 and h = a/40.

⇒ ∆Π =
Eh3

24

π4

a2
w2
0

[

1 + α3 h

2a

n
∑

i=1

sin2
πi

n+ 1
− λ

(

1

4
+ α

h

2a

n
∑

i=1

sin2
πi

n+ 1

)]

The equilibrium equations from the condition δΠ = 0 ⇒ w0 = 0, and the
critical point is characterized by

δ2Π = 0 ⇒
∂2Π

∂w2
0

= 0

⇒ λ =
1 + α3 h

2a

∑

sin2 πi
n+1

1
4
+ α h

2a

∑

sin2 πi
n+1

≥ 10

Substituting α = 4 ja h = a/40 and trying different n’s:

n = 1 ⇒
∑

sin2
πi

n+ 1
= 1 ⇒ λ =

1 + 4
5

1
4
+ 1

20

= 6

n = 2
∑

sin2
πi

n+ 1
= 2 ·

3

4
=

3

2
⇒ λ =

1 + 4
5
3
2

1
4
+ 1

20
3
2

≈ 6.8

n = 5
∑

sin2
πi

n+ 1
= 3 ⇒ λ = 8.5

n = 9
∑

sin2
πi

n+ 1
= 5 ⇒ λ = 10

Nine stiffeners will be sufficient.
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Problem 2. Determine τcr for an infinite plate strip using a trial function

w(x, y) = A sin(πy/b) sin[π(x− αy)/s]

where s is the half wavelength of the buckling mode. The plate is simply
supported and it’s bending stiffness is D. How large is the error in comparison
to the analytical solution τcr = 5.35π2D/b2t (t is the thickness of the plate)?
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Solution. Using the trial function

w(x, y) = A sin
πy

b
sin

π

s
(x− αy)

where s is the half wavelength in x-axis direction. Deflection vanish (w = 0)
at lines x = αy and x = αy + s in addition to the boundaries.

y

s

αb

x

The expression for the total potential energy is

∆Π =
D

2

∫

A

(∆w)2dA+Nxy

∫

A

w,xw,ydA
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Let’s integrate a slice between the lines y = 0, y = b, x = αy and x = αy+s,
i.e. the area of one half-wavelength:

w,x = A
π

s
sin

πy

b
cos

π

s
(x− αy)

w,xx = −A
π2

s2
sin

πy

b
sin

π

s
(x− αy)

w,y = A
π

b
cos

πy

b
sin

π

s
(x− αy)−Aα

π

s
sin

πy

b
cos

π

s
(x− αy)

w,yy = −A
π2

b2
sin

πy

b
sin

π

s
(x− αy)−Aα

π

b

π

s
cos

πy

b
cos

π

s
(x− αy)

−Aα
π

s

π

b
cos

πy

b
cos

π

s
(x− αy)−Aα2π

2

s2
sin

πy

b
sin

π

s
(x− αy)

∆w = w,xx + w,yy = −A

[

π2

s2
+

π2

b2
+ α2π

2

s2

]

sin
πy

b
sin

π

s
(x− αy)

−2Aα
π

b

π

s
cos

πy

b
cos

π

s
(x− αy)

w,xw,y = A2π

s
sin

πy

b
cos

π

s
(x− αy)

[π

b
cos

πy

b
sin

π

s
(x− αy)− α

π

s
sin

πy

b
cos

π

s
(x− αy)

]

Change of variables
{

x = t+ αr
y = r

⇒
∂(x, y)

∂(t, r)
=

[

xt yt
xr yr

]

=

[

1 0
α 1

]

Since det[ ∂(x, y)/∂(t, r) ] = 1, the scale is preserved.

b
∫

0

x−αy+s
∫

x−αy

(∆w)2dxdy =

b
∫

0

s
∫

0

(∆w)2dtdr = A2

[

(

π2

b2
+

π2

s2
+ α

π2

s2

)2

+ 4α2 π4

(bs)2

]

b

2

s

2

b
∫

0

s
∫

0

w,xw,ydtdr = −A2

∫ ∫

α
π2

s2
sin2

πr

b
cos2

πt

s
dtdr = −A2α

π2

4

b

s

⇒
∂2

∂A2
∆Π = 2

D

2

[

(

π2

s2
(1 + α2) +

π2

b2

)2
bs

4
+ α2π

4

bs

]

− 2α
π2

4

b

s
Nxy = 0

⇒ Nxy =
π2D

2αb2

[

2 + 6α2 +
s2

b2
+

b2

s2
(1 + α2)2

]

⇒ τ =
π2D

2αb2t

[

2 + 6α2 +
s2

b2
+

b2

s2
(1 + α2)2

]

The expression of the shear stress still contains two free parameters α and
s. The minimum is obtained when τ is minimized with respect to these two
paramaters:

τ =
π2D

2b2t

[

2

α
+ 6α+

s2

b2α
+

b2

s2
(1 + α2)2

α

]

=
π2D

2b2t
f(α, s)
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∂f

∂s
=

2s

αb2
+

(1 + α2)2

α

(−2b2)

s3
= 0 ⇒

s

b
=
√

1 + α2

⇒ f̃ =
2

α
+ 6α+ 2

1 + α

α
∂f̃

∂α
= −

2

α2
+ 6 + 2

2α2 − (1 + α2)

α2
= 0 ⇒ α = ±

1√
2
⇒

s

b
=

√

3

2

⇒ τcr = 4
√
2
π2D

b2t
≈ 5.66

π2D

b2t

The difference to the analytical value 5.35 π2D
b2t

, is thus 5.8 %.

Stability of structures 5


