Stability of structures

9. exercise - buckling of plates

Problem 1. A square plate is stiffened by equidistant beams of rectangular cross-section in the loading direction. How many stiffeners are required to obtain a buckling load N_{x} at least the value $10 \frac{\pi^{2} D}{a^{2}}$. Thickness of the plate is h, which is also the width of the beam. The height of the beams is $\alpha h=4 h$. The material is isotropic with Poisson's ratio 0.3. Use the energy method and a one-parametric trial function for the deflection $w(x, y)$. The plate is simply supported and the torsional stiffness of the beams need not to be taken into account. $h=a / 40$, where a is the side-length of the plate.

Solution. Let us use the following trial function to the deflection

$$
w(x, y)=w_{0} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a}
$$

Expression for the total potential energy of the plate is

$$
\begin{aligned}
\Delta \Pi= & \Delta U+\Delta V=\Delta U_{\text {plate }}+\Delta U_{\text {beams }}+\Delta V_{\text {plate }}+\Delta V_{\text {beams }} \\
\Delta U_{\text {plate }}= & \frac{D}{2} \int_{A}(\Delta w)^{2} d A \\
& \Delta w=w_{, x x}+w_{, y y}, \text { and } w_{, x x}=-w_{0} \frac{\pi^{2}}{a^{2}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a}=w_{, y y} \\
\Rightarrow \Delta U_{\text {plate }}= & \frac{D}{2} \frac{\pi^{4}}{a^{2}} w_{0}^{2} \\
\Delta V_{\text {plate }}= & -\frac{N_{x}}{2} \int_{A} w_{, x}^{2} d A=-\frac{N_{x}}{2} \frac{\pi^{2}}{4} w_{0}^{2} \\
\Delta U_{\text {beams }}= & \sum_{i=1}^{n} \frac{E I}{2} \int_{0}^{a} w_{, x x}^{2} d x=\frac{E I}{4} \frac{\pi^{4}}{a^{3}} w_{0}^{2} \sum \sin ^{2} \frac{\pi i}{n+1}
\end{aligned}
$$

$$
\begin{aligned}
\Delta V_{\text {beams }} & =-\sum_{i=1}^{n} \frac{\sigma_{x} h \alpha h}{2} \int_{0}^{a} w_{, x}^{2} d x, \text { where } \sigma_{x} h=N_{x} \\
& =-\frac{N_{x}}{4} \alpha \frac{h}{a} w_{0}^{2} \pi^{2} \sum \sin ^{2} \frac{\pi i}{n+1} \\
\Rightarrow \Delta \Pi & =\left[\frac{D}{2} \frac{\pi^{4}}{a^{2}}-\frac{N_{x}}{2} \frac{\pi^{2}}{4}+\frac{E I}{4} \frac{\pi^{4}}{a^{3}} \sum \sin ^{2} \frac{\pi i}{n+1}-\frac{N_{x}}{4} \alpha \frac{h}{a} \pi^{2} \sum \sin ^{2} \frac{\pi i}{n+1}\right] w_{0}^{2}
\end{aligned}
$$

When computing the $\Delta V_{\text {palkit }}$ term, it is assumed that the load N_{x} is equally distributed for the cross-sectional area of the beam. Using the notation

$$
N_{x}=\lambda \frac{\pi^{2} E h^{3}}{12 a^{2}}, I=\frac{\alpha^{3} h^{4}}{12}, \quad D=\frac{E h^{3}}{12}, \text { when } \nu=0
$$

In the example case $\alpha=4$ and $h=a / 40$.
$\Rightarrow \Delta \Pi=\frac{E h^{3}}{24} \frac{\pi^{4}}{a^{2}} w_{0}^{2}\left[1+\alpha^{3} \frac{h}{2 a} \sum_{i=1}^{n} \sin ^{2} \frac{\pi i}{n+1}-\lambda\left(\frac{1}{4}+\alpha \frac{h}{2 a} \sum_{i=1}^{n} \sin ^{2} \frac{\pi i}{n+1}\right)\right]$
The equilibrium equations from the condition $\delta \Pi=0 \Rightarrow w_{0}=0$, and the critical point is characterized by

$$
\begin{aligned}
& \delta^{2} \Pi=0 \Rightarrow \frac{\partial^{2} \Pi}{\partial w_{0}^{2}}=0 \\
& \Rightarrow \lambda=\frac{1+\alpha^{3} \frac{h}{2 a} \sum \sin ^{2} \frac{\pi i}{n+1}}{\frac{1}{4}+\alpha \frac{h}{2 a} \sum \sin ^{2} \frac{\pi i}{n+1}} \geq 10
\end{aligned}
$$

Substituting $\alpha=4$ ja $h=a / 40$ and trying different n 's:

$$
\begin{array}{ll}
n=1 \Rightarrow & \sum \sin ^{2} \frac{\pi i}{n+1}=1 \Rightarrow \lambda=\frac{1+\frac{4}{5}}{\frac{1}{4}+\frac{1}{20}}=6 \\
n=2 & \sum \sin ^{2} \frac{\pi i}{n+1}=2 \cdot \frac{3}{4}=\frac{3}{2} \Rightarrow \lambda=\frac{1+\frac{43}{5} \frac{1}{4}}{\frac{1}{4}+\frac{1}{20} \frac{3}{2}} \approx 6.8 \\
n=5 & \sum \sin ^{2} \frac{\pi i}{n+1}=3 \Rightarrow \lambda=8.5 \\
n=9 & \sum \sin ^{2} \frac{\pi i}{n+1}=5 \Rightarrow \lambda=10
\end{array}
$$

Nine stiffeners will be sufficient.

Problem 2. Determine $\tau_{\text {cr }}$ for an infinite plate strip using a trial function

$$
w(x, y)=A \sin (\pi y / b) \sin [\pi(x-\alpha y) / s]
$$

where s is the half wavelength of the buckling mode. The plate is simply supported and it's bending stiffness is D. How large is the error in comparison to the analytical solution $\tau_{\text {cr }}=5.35 \pi^{2} D / b^{2} t(t$ is the thickness of the plate)?

Solution. Using the trial function

$$
w(x, y)=A \sin \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y)
$$

where s is the half wavelength in x-axis direction. Deflection vanish $(w=0)$ at lines $x=\alpha y$ and $x=\alpha y+s$ in addition to the boundaries.

αb

The expression for the total potential energy is

$$
\Delta \Pi=\frac{D}{2} \int_{A}(\Delta w)^{2} d A+N_{x y} \int_{A} w_{, x} w_{, y} d A
$$

Let's integrate a slice between the lines $y=0, y=b, x=\alpha y$ and $x=\alpha y+s$,
i.e. the area of one half-wavelength:

$$
\begin{aligned}
w_{, x}= & A \frac{\pi}{s} \sin \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y) \\
w_{, x x}= & -A \frac{\pi^{2}}{s^{2}} \sin \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y) \\
w_{, y}= & A \frac{\pi}{b} \cos \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y)-A \alpha \frac{\pi}{s} \sin \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y) \\
w_{, y y}= & -A \frac{\pi^{2}}{b^{2}} \sin \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y)-A \alpha \frac{\pi}{b} \frac{\pi}{s} \cos \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y) \\
& -A \alpha \frac{\pi}{s} \frac{\pi}{b} \cos \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y)-A \alpha^{2} \frac{\pi^{2}}{s^{2}} \sin \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y) \\
\Delta w= & w_{, x x}+w, y y=-A\left[\frac{\pi^{2}}{s^{2}}+\frac{\pi^{2}}{b^{2}}+\alpha^{2} \frac{\pi^{2}}{s^{2}}\right] \sin \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y) \\
& -2 A \alpha \frac{\pi}{b} \frac{\pi}{s} \cos \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y) \\
w_{, x} w_{, y}= & A^{2} \frac{\pi}{s} \sin \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y)\left[\frac{\pi}{b} \cos \frac{\pi y}{b} \sin \frac{\pi}{s}(x-\alpha y)-\alpha \frac{\pi}{s} \sin \frac{\pi y}{b} \cos \frac{\pi}{s}(x-\alpha y)\right]
\end{aligned}
$$

Change of variables

$$
\left\{\begin{array}{c}
x=t+\alpha r \\
y=r
\end{array} \Rightarrow \frac{\partial(x, y)}{\partial(t, r)}=\left[\begin{array}{ll}
x_{t} & y_{t} \\
x_{r} & y_{r}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right]\right.
$$

Since $\operatorname{det}[\partial(x, y) / \partial(t, r)]=1$, the scale is preserved.

$$
\begin{gathered}
\int_{0}^{b} \int_{x-\alpha y}^{x-\alpha y+s}(\Delta w)^{2} d x d y=\int_{0}^{b} \int_{0}^{s}(\Delta w)^{2} d t d r=A^{2}\left[\left(\frac{\pi^{2}}{b^{2}}+\frac{\pi^{2}}{s^{2}}+\alpha \frac{\pi^{2}}{s^{2}}\right)^{2}+4 \alpha^{2} \frac{\pi^{4}}{(b s)^{2}}\right] \frac{b}{2} \frac{s}{2} \\
\int_{0}^{b} \int_{0}^{s} w_{, x} w_{, y} d t d r=-A^{2} \iint \alpha \frac{\pi^{2}}{s^{2}} \sin ^{2} \frac{\pi r}{b} \cos ^{2} \frac{\pi t}{s} d t d r=-A^{2} \alpha \frac{\pi^{2}}{4} \frac{b}{s} \\
\Rightarrow \frac{\partial^{2}}{\partial A^{2}} \Delta \Pi=2 \frac{D}{2}\left[\left(\frac{\pi^{2}}{s^{2}}\left(1+\alpha^{2}\right)+\frac{\pi^{2}}{b^{2}}\right)^{2} \frac{b s}{4}+\alpha^{2} \frac{\pi^{4}}{b s}\right]-2 \alpha \frac{\pi^{2}}{4} \frac{b}{s} N_{x y}=0 \\
\Rightarrow N_{x y}=\frac{\pi^{2} D}{2 \alpha b^{2}}\left[2+6 \alpha^{2}+\frac{s^{2}}{b^{2}}+\frac{b^{2}}{s^{2}}\left(1+\alpha^{2}\right)^{2}\right] \\
\Rightarrow \tau=\frac{\pi^{2} D}{2 \alpha b^{2} t}\left[2+6 \alpha^{2}+\frac{s^{2}}{b^{2}}+\frac{b^{2}}{s^{2}}\left(1+\alpha^{2}\right)^{2}\right]
\end{gathered}
$$

The expression of the shear stress still contains two free parameters α and s. The minimum is obtained when τ is minimized with respect to these two paramaters:

$$
\tau=\frac{\pi^{2} D}{2 b^{2} t}\left[\frac{2}{\alpha}+6 \alpha+\frac{s^{2}}{b^{2} \alpha}+\frac{b^{2}}{s^{2}} \frac{\left(1+\alpha^{2}\right)^{2}}{\alpha}\right]=\frac{\pi^{2} D}{2 b^{2} t} f(\alpha, s)
$$

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{2 s}{\alpha b^{2}}+\frac{\left(1+\alpha^{2}\right)^{2}}{\alpha} \frac{\left(-2 b^{2}\right)}{s^{3}}=0 \Rightarrow \frac{s}{b}=\sqrt{1+\alpha^{2}} \\
& \Rightarrow \tilde{f}=\frac{2}{\alpha}+6 \alpha+2 \frac{1+\alpha}{\alpha} \\
\frac{\partial \tilde{f}}{\partial \alpha} & =-\frac{2}{\alpha^{2}}+6+2 \frac{2 \alpha^{2}-\left(1+\alpha^{2}\right)}{\alpha^{2}}=0 \Rightarrow \alpha= \pm \frac{1}{\sqrt{2}} \Rightarrow \frac{s}{b}=\sqrt{\frac{3}{2}} \\
& \Rightarrow \tau_{\text {cr }}=4 \sqrt{2} \frac{\pi^{2} D}{b^{2} t} \approx 5.66 \frac{\pi^{2} D}{b^{2} t}
\end{aligned}
$$

The difference to the analytical value $5.35 \frac{\pi^{2} D}{b^{2} t}$, is thus 5.8%.

