Stability of structures

6. exercise - torsional and lateral buckling

Problem 1. Determine the critical load $P_{\text {cr }}$ for a centrally compressed clamped beam. The cross-section is shown below and $b=10 t, \nu=0$. Determine the critical load as a function of the length.

Solution. The differential equations for torsional buckling for a column are

$$
\left\{\begin{array}{c}
E I_{z} v^{(4)}+P\left(v^{\prime \prime}+z_{v} \varphi^{\prime \prime}\right)=0 \\
E I_{y} w^{(4)}+P\left(w^{\prime \prime}-y_{v} \varphi^{\prime \prime}\right)=0 \\
E I_{\omega} \varphi^{(4)}-G I_{t} \varphi^{\prime \prime}+P\left(z_{v} v^{\prime \prime}-y_{v} w^{\prime \prime}+r^{2} \varphi^{\prime \prime}\right)=0
\end{array}\right.
$$

For a T-beam we have

The equations simplify now to the form

$$
\begin{aligned}
& E I_{z} v^{(4)}+P v^{\prime \prime}=0 \\
& E I_{y} w^{(4)}+P\left[w^{\prime \prime}-y_{v} \varphi^{\prime \prime}\right]=0 \\
& -G I_{t} \varphi^{\prime \prime}+P\left[-y_{v} w^{\prime \prime}+r^{2} \varphi^{\prime \prime}\right]=0
\end{aligned}
$$

The upper equation, i.e. the displacement in y-direction uncouples from the displacement in the z-direction and from the twist-rotation, thus the buckling in y-direction gives the load

$$
P_{y}=4 \pi^{2} \frac{E I_{z}}{L^{2}}
$$

Function which satisfy the boundary conditions are

$$
\begin{aligned}
w & =B\left(1-\cos 2 \frac{n \pi x}{L}\right) \\
\varphi & =C\left(1-\cos 2 \frac{n \pi x}{L}\right)
\end{aligned}
$$

Let's denote $P=\lambda G I_{t} r^{-2}$

$$
\frac{G I_{t}}{r^{2}}\left[\begin{array}{cc}
\alpha-\lambda & y_{v} \lambda \\
y_{v} \lambda & r^{2}(1-\lambda)
\end{array}\right]\binom{B}{C}=\binom{0}{0}
$$

where $\alpha=4 \pi^{2}(r / L)^{2} E I_{y} / G I_{t}$. In order to have a non-trivial solution for A, B the determinant has to vanish. The critical value for the λ parameter can be found by solving the characteristic polynomial

$$
\left[1-\left(\frac{y_{v}}{r}\right)^{2}\right] \lambda^{2}-(1+\alpha) \lambda+\alpha=0
$$

If we denote $I_{y}=I$, then $I_{z}=\frac{5}{2} I$ and $I_{t}=\frac{2}{25} I$. If $\nu=0$ then $G=E / 2$ and $G I_{t}=\frac{1}{25} E I$. Also $\left(y_{v} / r\right)^{2}=\frac{3}{10}$, thus the characteristic polynomial has the form

$$
\lambda^{2}-\frac{10}{7}(1+\alpha) \lambda+\frac{10}{7} \alpha=0
$$

where $\alpha=\frac{125}{6} \pi^{2}(b / L)^{2}$. The smaller toot is

$$
\lambda_{1}=\frac{5}{7}(1+\alpha)\left(1-\sqrt{1-\frac{14 \alpha}{5(1+\alpha)^{2}}}\right)
$$

Note, that $\lambda_{1} \leq 1$. The buckling load is now the minimum from

$$
P_{y}=4 \pi^{2} \frac{E I_{z}}{L^{2}}=250 \pi^{2}\left(\frac{r}{L}\right)^{2} \frac{G I_{t}}{r^{2}}=\frac{625}{12} \pi^{2}\left(\frac{b}{L}\right)^{2} \frac{G I_{t}}{r^{2}} \quad P_{z, \phi, 1}=\lambda_{1} \frac{G I_{t}}{r^{2}}
$$

Note that, if the torsional mode is prevented the buckling load in z-direction is

$$
P_{z}=4 \pi^{2} \frac{E I_{y}}{L^{2}}=\alpha \frac{G I_{t}}{r^{2}}=\frac{125}{6} \pi^{2}\left(\frac{b}{L}\right)^{2} \frac{G I_{t}}{r^{2}}=\frac{2}{5} P_{y}>P_{z, \phi, 1}
$$

The critical load parameter $\lambda_{\text {cr }}=\lambda_{1}$ is shown below as a function of the slenderness (L / b)

Problem 2. Determine the critical lateral buckling moment $M_{\text {cr }}$ for the beam shown below. The support on the rhs side prevents vertical and lateral displacements but the cross-section can rotate about the support. The cross-section is rectangular with dimensions $b \times h$ where $h \gg b$.

Solution. The differential equations takes now the form

$$
\left\{\begin{align*}
E I_{y} w^{(4)}-M_{z}^{0} \varphi^{\prime \prime} & =0 \tag{1}\\
-G I_{t} \varphi^{\prime \prime}-M_{z}^{0} w^{\prime \prime} & =0
\end{align*}\right.
$$

Boundary conditions on the lhs support

$$
w(0)=0, w^{\prime \prime}(0)=0, \varphi(0)=0
$$

The rhs boundary conditions are slightly more complicated

The kinematical constraint at the center of gravity of the cross-section is

$$
w(L)=-\frac{h}{2} \varphi(L)
$$

Let's divide the external moment M into componets parallel to the deformed coordinate axis

$$
\begin{aligned}
& M_{\bar{z}} \approx M \\
& M_{\bar{y}}=E I_{y} w^{\prime \prime} \approx-\varphi(L) M \\
& M_{\bar{x}}=-w^{\prime}(L) M
\end{aligned}
$$

The boundary conditions are

$$
\begin{aligned}
w(0) & =0 & & w(L)=-\frac{h}{2} \varphi(L) \\
w^{\prime \prime}(0) & =0 & & -E I_{y} w^{\prime \prime}(L)=-\varphi(L) M \\
\varphi(0) & =0 & & G I_{t} \varphi^{\prime}(L)=-w^{\prime}(L) M
\end{aligned}
$$

Substituting equation $\left(1_{2}\right)$ into equation $\left(1_{1}\right)$ saadaan

$$
w^{(4)}+k^{2} w^{\prime \prime}=0, k^{2}=\frac{M^{2}}{E I_{y} G I_{t}}
$$

$$
\Rightarrow w=A \sin k x+B \cos k x+C x+D
$$

From boundary conditions we get

$$
\begin{aligned}
& w(0)=w^{\prime \prime}(0)=0 \Rightarrow D=B=0 \\
& \Rightarrow w=A \sin k x+C x
\end{aligned}
$$

From the differential equation $\left(1_{2}\right)$ we can deduce that φ is of similar form

$$
\begin{aligned}
& \Rightarrow \varphi=E \sin k x+F x \\
& \Rightarrow-G I_{t} k^{2} E \sin k x-M k^{2} A \sin k x=0 \\
& \Rightarrow E=-\frac{M}{G I_{t}} A
\end{aligned}
$$

Let's substitute the boundary conditions into these trial functions

$$
\begin{aligned}
G I_{t} \varphi^{\prime}(L)=-w^{\prime}(L) M \Rightarrow & -G I_{t}\left(k \frac{M}{G I_{t}} A \cos k x-F\right)=-(A k \cos k x+C) M \\
& \Rightarrow F=-\frac{M}{G I_{t}} C \\
w(L)=-\frac{h}{2} \varphi(L) \Rightarrow & A \sin k L+C L=\frac{h}{2} \frac{M}{G I_{t}}(A \sin k L+C L) \\
& \Rightarrow\left(1-\frac{M h}{2 G I_{t}}\right) A \sin k L+\left(1-\frac{M h}{2 G I_{t}}\right) C L=0 \\
-E I_{y} w^{\prime \prime}(L)=-\varphi(L) M \Rightarrow & E I_{y} k^{2} A \sin k L=\frac{M}{G I_{t}}(A \sin k L+C L) \\
& \Rightarrow\left(E I_{y} k^{2}-\frac{M^{2}}{G I_{t}}\right) A \sin k L+-\frac{M}{G I_{t}} C=0
\end{aligned}
$$

Since $k^{2}=M^{2} / E I_{y} G I_{t}$ it follows from equation (2) $-\left(M / G I_{t}\right) C=0 \Rightarrow C=0$. From equation (2) we obtain

$$
\left[\left(1-\frac{M h}{2 G I_{t}}\right) \sin k L\right]=0
$$

The critical moment is then

$$
M_{\mathrm{cr}}=\min \left\{\frac{2 G I_{t}}{h}, \pi \frac{\sqrt{E I_{y} G I_{t}}}{L}\right\}
$$

The eigenmodes are

$$
\begin{aligned}
w(x) & =A \sin k x \\
\varphi(x) & =-\frac{M}{G I_{t}} A \sin k x
\end{aligned}
$$

Note! if $M_{\text {cr }}=\frac{2 G I_{t}}{h} \Rightarrow k L \neq \pi \Rightarrow w(L), \varphi(L) \neq 0$. If $M_{\text {cr }}=\frac{2 G I_{t}}{h} \Rightarrow k L=\pi$.

Problem 3. Determine the critical moment $M_{\text {cr }}$ for the beam shown below, the proportions are $b=10 t, L=20 b, \nu=1 / 3$. What is the result if M is negative?

Solution. The cross-sectional constants are

$$
\begin{aligned}
& I_{t}=\frac{2}{3} t^{3} b, I_{y}=\frac{1}{3} t b^{3}, I_{z}=\frac{1}{12} t b^{3}, y_{v}=-\frac{\sqrt{2}}{4} b, z_{v}=0 \\
& \beta_{z}=\frac{1}{I_{z}} \int y\left(y^{2}+z^{2}\right) d A-2 y_{v}, \int y^{3} d A=0, \int y z^{2} d A=2 \frac{b t}{6} \frac{\sqrt{2}}{4} b \frac{1}{2} b^{2}=\frac{\sqrt{2}}{24} t b^{4} \Rightarrow \beta_{z}=\sqrt{2} b
\end{aligned}
$$

The differential equations for the lateral/torsional buckling are

$$
\left\{\begin{array}{l}
E I_{y} w^{(4)}-M \varphi^{\prime \prime}=0 \\
-G I_{t} \varphi^{\prime \prime}-M w^{\prime \prime}-\beta_{z} M \varphi^{\prime \prime}=0 \quad \Rightarrow \quad \varphi^{\prime \prime}=-\frac{M}{G I_{t}+\beta_{z} M} w^{\prime \prime} \\
w^{(4)}+\frac{M^{2}}{E I_{y}\left(G I_{t}+\beta_{z} M\right)} w^{\prime \prime}=0
\end{array}\right.
$$

The general solution is

$$
w=A \sin k x+B \cos k x+C x+D \quad \text { where } \quad k^{2}=\frac{M^{2}}{E I_{y}\left(G I_{t}+\beta_{z} M\right)}
$$

The boundary conditions are

$$
\begin{aligned}
w(0) & =0 \\
w^{\prime \prime}(0) & =0 \\
w(L) & =0 \\
w^{\prime \prime}(L) & =0
\end{aligned} \quad \begin{aligned}
& B+D=0 \\
& B=0 \\
& A k^{2} \sin k L=0 \quad \Rightarrow \quad k L=n \pi,
\end{aligned}
$$

The lowest buckling load is obtained when $n=1$, hence

$$
M^{2}-\beta_{z} \frac{\pi^{2}}{L^{2}} E I_{y} M-E I_{y} G I_{t} \frac{\pi^{2}}{L^{2}}=0
$$

denoting $M=\lambda \sqrt{E I_{y} G I_{t}} / L$ and $E I_{y}=\alpha^{2} G I_{t}$

$$
\lambda^{2}-\pi^{2} \alpha \frac{\beta_{z}}{L}-\lambda-\pi^{2}=0
$$

The roots are

$$
\lambda=\frac{\pi^{2}}{2} \alpha\left(\frac{\beta_{z}}{L}\right)\left(1 \pm \sqrt{1+\frac{4}{\pi^{2} \alpha^{2}}\left(\frac{L}{\beta_{z}}\right)^{2}}\right)
$$

Substituting $\beta_{z}=\sqrt{2} b, L=20 b, \alpha^{2}=4000 / 3$, gives the result

$$
\lambda=2.62 \pi^{2} \quad \vee \quad \lambda=-0.04 \pi^{2}
$$

Let's check if the expression for k^{2} is positive for negative λ values, i.e. if it holds $G I_{t}+\beta_{z} M>$ 0 .

$$
G I_{t}+\beta_{z} \lambda \frac{\sqrt{E I_{y} G I_{t}}}{L}=G I_{t}\left(1+2 \frac{\sqrt{5}}{\sqrt{3}} \lambda\right)=-0.02
$$

Therefore the trial function for w is wrong for a negative moment. In this case

$$
\begin{aligned}
& w^{\prime \prime \prime \prime}-k^{2} w^{\prime \prime}=0, \text { where } k^{2}=-\frac{M^{2}}{E I_{y}\left(G I_{t}+\beta_{z} M\right)} \\
& w(x)=A \sinh k x+B \cosh k x+C x+D
\end{aligned}
$$

From boundary conditions we get $B=D=0$ and

$$
\binom{A \sinh k L+C L=0}{A k^{2} \sinh k L=0} \Rightarrow A=C=0 \vee k=0
$$

Since $k \neq 0$ the beam does not buckle laterally. However, the flanges can buckle in a plate-like mode.

