Stability of structures

6. exercise — torsional and lateral buckling

Problem 1. Determine the critical load P, for a centrally compressed clamped beam. The
cross-section is shown below and b = 10f, v = 0. Determine the critical load as a function of

the length.
-

Solution. The differential equations for torsional buckling for a column are

ELvW + P(v" + 2,¢") =0
ELw® + P(w” — y,¢") =0
EIL,o® — GLi¢" + P(z,0" — yyw" +12¢") =0

For a T-beam we have

L
T 4L 1 2 =0, EI,=0
b : yo = —b/4
b3t 5
I, ~—. I, =—bt
l TR ;
, Itz§t3b,r2:f+y§+z§:ﬂ52

The equations simplify now to the form

ELvY + P =0
ELw® + Plw” — y,0"] =0
]

—-GLy" + Pl—y,w” +1°¢"] =0

The upper equation, i.e. the displacement in y-direction uncouples from the displacement in

the z-direction and from the twist-rotation, thus the buckling in y—direction gives the load

LEL
L2

P, =4rw
Function which satisfy the boundary conditions are

nmxr
- B(l— ~2—)
w COS n%x
- 0(1— 2_>

%) cos 2—

Let’s denote P = \GI;r—2
Gl | a—A Yo B\ (0
r2 YA 21— N) c) \0
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where a = 472(r/L)?EI,/G1I;. In order to have a non-trivial solution for 4, B the determinant
has to vanish. The critical value for the A parameter can be found by solving the characteristic
polynomial

{1-(%)1 N (l+a)A+a=0

If we denote I, = I, then I, = %I and [; = 2—251. If v =0 then G = E/2 and GI; = 2—15EI.

Also (y,/r)? = 3, thus the characteristic polynomial has the form

10 10

where v = 12272(b/L)%. The smaller toot is

M=2(1+a) (1— 1—%)

Note, that Ay < 1. The buckling load is now the minimum from

L

EI N2 Gl 625 b\ %G, GI,
_ a2l 2 t 2 t - t
Py =amt =205 (1) 5t = 5 < > 2 Pea=hey

Note that, if the torsional mode is prevented the buckling load in z—direction is

P, = 472 7

22 T " =Py> P

EI, GI, 125 ,(b\*GIL, 2
r2 5

The critical load parameter Ay = A1 is shown below as a function of the slenderness (L/b)
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Problem 2. Determine the critical lateral buckling moment M., for the beam shown below.
The support on the rhs side prevents vertical and lateral displacements but the cross-section
can rotate about the support. The cross-section is rectangular with dimensions b x h where
h > b.
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Solution. The differential equations takes now the form

ElLw® — M%" = 0 1)
—GItSOI/—MS’U}// = 0

Boundary conditions on the lhs support
w(0) =0, w"(0) =0, ¢(0) =0

The rhs boundary conditions are slightly more complicated

¥
| The kinematical constraint at the center of grav-
\ ity of the cross-section is
Yy, v h
w(L) = —§SO(L)
WE My .
M
Y
Let’s divide the external moment M into com-
oM ponets parallel to the deformed coordinate axis
z , T
L
= M, ~ M
IR My = ELu'"~—o(L)M
M; = —uw'(L)M
z
The boundary conditions are
h
w0) =0 ul) = 5
w'(0)=0 —FELw (L) o(L)M
p(0) =0 I (L) = —w'(L)M

Substituting equation (13) into equation (1;) saadaan

M2
EILGI,

w + Bu" = 0, k® =
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=w = Asinkx+ Bcoskx +Cxz+ D

From boundary conditions we get

w(0) =w"(0)=0 = D=B=0
= w=Asinkzx +Cxzx

From the differential equation (12) we can deduce that ¢ is of similar form

= ¢ = Esinkx + Fx
= —GLKk*Esinkx — Mk*Asinkz =0
= E=—4FA

Let’s substitute the boundary conditions into these trial functions

GItSDI(L) = —w’(L)M = _Glt(kGﬁlA coskx — F) = —(Akcoskx + C)M
t

M
t
w(L):—g (L) = AsinkL—l—C’L:gGﬂLf(AsinkL%—CL)

Mh ) Mh
= <1 — 2GIt> AsinkL + (1— 2GIt> CL=0

M
~FEILw"(L) = —p(L)M = FEIk*AsinkL = o (AsinkL +CL)
t

M? M
EIk>— — | AsinkL + ———C =
:>< y GIt> sin + GItC 0

Since k? = M?/EI,G1, it follows from equation (2) —(M/GI;)C = 0 = C = 0. From equation

(2) we obtain
Mh Y .
[(1 — 2GIt> ska} =0

/EIL,GI
Mcr:min{2GIt T Y t}

h L

The critical moment is then

The eigenmodes are

w(zr) = Asinkx

M
o(z) = _G—IA sin kx
t
Note! if Mo = 262t = kL # 7 = w(L), p(L) # 0. If Mo, = 251t = kL = 7.

Problem 3. Determine the critical moment M., for the beam shown below, the proportions
are b = 10t, L = 20b, v = 1/3. What is the result if M is negative?

C@ Qg N
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Solution. The cross-sectional constants are

2 4 1 4 S V2
It:§t b, Iyzgtb 5 IZ:Etb s yv:_Tb7 Z’U:O
1 bt 2
ﬁZ:I_/y(yQ—i—zQ)dA—ZyU, /y3dA:o, / 2dA_z \/_b b2 \22_ bt = B, = V2b
4
The differential equations for the lateral/torsional buckling are
Elw® — My" =0
M
—GLY — Mw' — .M =0 = "n_ _ "
tP w IBZ P ' GIt + /BZMU}
M2
(4) "no__
w ) + w" =0
EL,(GIL + B.M)
The general solution is
M2

w= Asinkz + Bcoskx +Cx + D where k=

EI,(GI; + B.M)

The boundary conditions are

AsinkL+CL =0
Ak?sinkL =0 = kL =nm,

The lowest buckling load is obtained when n = 1, hence

2 2
ﬁz sEL,M — EI GIt =0

denoting M = X\\/E1,GI;/L and El, = « 2GI,

)\2—71'204%—)\—71'2:0

_7'('2 0B, 4 L2
=T () ¢ (L)

Substituting 8, = v/2b, L = 20b, o = 4000/3, gives the result
A=2621% VA= —0.047>

The roots are

Let’s check if the expression for k? is positive for negative A values, i.e. if it holds GI; + 3, M >

0.
ELGI V5
GI M =G [ 142520 | = —0.02
t+ B 7 t ( + 3 )
Therefore the trial function for w is wrong for a negative moment. In this case

M2
w” — kK*w” = 0, where k% = —

v EIL(GI; + 5. M)
w(z) = Asinh kx + Bcoshkz + Cx + D

From boundary conditions we get B =D = 0 and

< AsinhkL +CL =0

Ak?sinh kL = 0 >jA:C:OVk:O

Since k # 0 the beam does not buckle laterally. However, the flanges can buckle in a plate-like
mode.
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