Stability of structures

4. exercise — continuous systems, column buckling

Problem 1. Derive the Euler equations of the cantilever beam shown below. Assume
inextensible beam and small deflections. Solve the equations and determine the eigenmodes
and show that the eigenmodes are orthogonal.

EI

Solution. The total potential energy functional is

L

/ [EI(U”)2 - P(v')Z] dz,

0

II(v) =

N | —

where the horizontal deflection A wunder the load P can be determined as

¢ = v (v small)
du = dz(1l — cosy)

w Tdv ~ dx [1 — (1 — %(u’)Qﬂ = %(v')de
" de+ du A — /du:%/(v/)zdx

The Euler equations are obtained from the stationarity condition of the functional

L
oIl =11 ,6v = /(EIU”(SU" — Pv'§v)dz =0,
0
where dv is the variation of the deflection, i.e. an arbitrary function satisfying the homoge-

nious kinematical boundary conditions v(0) = v’(0) = 0. After integration by parts we get
the term dv as a common factor inside the integral

L L L L
I = | EIV"60 — /(EIU")’(SU'dx —| Pv'év+ /5vdx
0 0 0 0
L L L L
= | EIV6 — | (EIWV"Y6v —| Pu'év+ / [(EIV")" + (PV')'] dvdx
0 0 0
0

At the lower limit 6v(0) = 0v’(0) = 0, and taking into account the definitions of the
moment and shear force: M = —EIv"” sekd Q = —(EIv"), we get

L
SIT = —M(L)ov' (L) + [Q(L) — Pv'(L)]ov(L) + / [(EIV")" + (PV')'] dvdx = 0,
0
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since  dv is  arbitrary = function = satisfying the  boundary  conditions

v(0) = '(0) = 0, thus the following equations have to be satisfied
(EIV")" + (PV') =0 z € (0,L) (Euler equation)
tural
M(L) =0 e .
Q(L) — PY(L) =0 } boundary conditions
v(0) =0 essential
v'(0) =0 boundary conditions

If the bending stiffness F'I and the compressive force P are constants in the domain,
we get a homogeneous differential equation with constant coefficients

EIv® + Py = 0
= EIV" + Pv = Cz+ D, (C,D constants)
P
=v = Asinkx+ Bcoskx+Cx+ D, k= o
The derivatives are
v\ = Akcoskx — Bksinkx + C
" = —Ak®sinkz — Bk® cos kx
" = —Ak®coskx + Bk3sinkx

0 = B+D=0
V' (0)=0 = Ak+C=0
0 = AsinkL + BcoskL =0

— EIV(L) - PV (L) =0 =
— EI(—Ak3 coskL + Bk3sinkL) — P(AkcoskL — BksinkL +C) =0 (1)
EI VA

P=)\— k=-—F
)‘L2 = 17

It follows from equation (1) that A =0 = C =0 = BcoskL =0 = B =0 or
coskL =0.1If B=0 = v =0 it yields a trivial solution, hence we should have

coskL =0 = kL:g—i—mr, n=20,1,2,..

2
= A\ = (g—l—mr> ,

and the lowest buckling load is

m\ 2 n? EI
Yn=(35) = Re= T

The eigenmode corresponding to the eigenvalue A, is

1 /m
n =B n® — 1), n_—_<_ >
v (coskpx —1), k T 2+n7r
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It was asked to give the normalized eigenmodes. For that we should define how this
normalization should be done. It is usual to use the energy norm

L
loull3 = / EIG!)dz
0

The energy orthogonality thus means
/EIU” " dr =0, kun n # m.

Lets normalize the eigenmodes v, such, that ||v,||r = E1, where Ej is the energy unit and

[E1] = vNm.

"o 2
v, = —DBk; coskpx
L

= E?= EIBQkf‘L/cos2 kpxdx
0

Lets change variables such, that

I
o

1 . 0 =
y = knpx, dxzadyrajat{ I Zy/

%—{—TLTF

Ztnm
1

= E% = EIB2I<:,?; / cos? ydy = EIB2I<:3 <2 + nﬂ')
5" 2

Lop_ 2E7 _ 2E7

EIK} (5 +nm)  EIT(1 4 2n)
_ 4V2L3PE,
m2(1+2n)?VEI
The energy orthonormal eigenfunctions are thus
42 B L3

n = By kn —1), B, =
vp () (coskpz — 1) A+ Vi

Orthogonality:

/EIU” "dr = 0, kunn # m.

/ 2 I/dx —
0
L

L
= /c [(1+ 2n)y] cos[(1 4 2m)y]dy = 0, kun n # m.
0

—

0 T 0 T T 2L
—(1+2 —} [— 142 —] k.y=—-—, = —
cos [2( + n)L cos 2( + m)L <mer V=57 dx - dy)

N ©

™
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Problem 2. For the structure shown below, determine P, starting from the differential
equation.

2ET EI

P |
L/2 * L/2
| | |
Solution.
In part 11 v{*) + k%" = 0, where k2 = P/2FET.
2 oM = 0
5 =

BC:

My
56‘ My
P
o (~5) = 1f (§) = (§) = 1§ (§) 0 QQ\/@
v1(0) = v2(0)
v1(0) = v3(0)

Q1(0) = Q2(0) + Pvy(0)

Solutions for the homogenious equations are

= Cisinkx + Cycoskx + Csx + Cy
V] Chkcoskx — Coksin kx + C5
i —O1k? sin kx — Cyk? cos kx
v’ —C1 K3 cos kx + Cok3 sin kx
C5.%'3 + 061'2 + C7.%' + Cg

4
—
I

H
I

Vo =

vé = 305562 + 2Csx + Cy
Ug = 6Cs5x + 2Cq

A = 60

Taking the boundary conditions into account

@1(0)
—2E1v{"(0)
201 k3

Cs

M;(0)
—2E1v7(0)
205 k?

v1(0)
Cik + C3

= Q2(0) + Pu3(0)
= —EIv'(0) + Pvy(0)
= —6C5+ 2/<?207

1 1
= ——kC + k2 C
3 1+ 3 7

= M;(0)
= —EIvj(0)
= 205 = Cs=—k’Cy

= (0)

1 1 1
= COr=Cs5= —gk?’(]l + §k2(01/<: +C3) = gk;?c*g
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V1 (0) = V2 (0)

Cy+Cy = (3
L . kL kL L
m <_§> = 0:>C420181n7—02COS7+035
L kL kL
v] <—§> = 0= C3 = —k(Cjcos > + Co sin 7)
L 1 L\? L\’ L
kL kL 1.\ kL
= [7—kzL0057<1—|—ﬁ(k‘L) )-i—SID?] Cy
1 kL U kL 1, B
+ [1 - Z(kL) — 08 o= — k:Lsm? <1 + ﬂ(/ﬁL) >] Cy=0
L L\? L
o <5> -0 RG <5> ~ 2 Gy + O+ G =0

1 L 1 L
= [1 - (1 + Z(kL)2> cos %} kCy + {—kL - (1 + Z(/<;L)2> sin %} Cy=0

N a(kL) b(kL) Ci | _ [0
c¢(kL) d(kL) Cy [ 10
det =0= kL = 755= P, = 114%
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