
Stability of structures

2. exercise – equilibrium paths of discrete structural models

Problem 1. Determine all equilibrium paths of the structure consisting
of two rigid bars and a linear elastic rotational spring. The structure has
a geometrical imperfection φ0 in its unloaded state. Investigate also the
stability of all paths. Are there critical points on the paths?
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Solution: The total potential energy expression is now

Π =
1

2
k[2(ϕ − ϕ0)]

2 − PL(cosϕ0 − cosϕ)

∂Π

∂ϕ
= 4k(ϕ − ϕ0)− PL sinϕ

∂2Π

∂ϕ2
= 4k − PL cosϕ

The structure will be in equilibrium when the total potential energy attains
its minimum, thus the first variation of the TPE will vanish.

δΠ =
∂Π

∂ϕ
δϕ = 0 ∀ δϕ

⇒
∂Π

∂ϕ
= 0

⇒ P =
4k(ϕ − ϕ0)

L sinϕ

An equilibrium state is stable if the second variation of the TPE is positive

δ2Π =
∂2Π

∂ϕ2
(δϕ)2 > 0

⇒
∂2Π

∂ϕ2
> 0

⇒ P <
4k

L cosϕ
.

Inserting the equilibrium equation P = 4k(ϕ−ϕ0)/L sinϕ in the expression
above, gives the condition for stability

4k

(

1−
ϕ− ϕ0

tanϕ

)

> 0

⇒
ϕ− ϕ0

tanϕ
< 1,

which is valid for all non-negative values of ϕ. Thus this equilibrium path
does not have critical points.
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In the figure above, dotted line shows the equilibrium path of the perfect
structure ϕ0 = 0, and solid line indicates the stable path when ϕ0 > 0. The
path in the negative part of ϕ axis shown by a solid line is a complementary
path. The load parameter λ is defined as

λ = P/Pkr = PL/(4k). (1)

Notice, that the complementary path is not stable everywhere. Deter-
mine the unstable and stable parths of the complementary path! Note too,
that this means an existence of a critical point on the complementary path.
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Problem 2. Determine all equilibrium paths starting from the unloaded
state of the structure consisting of two rigid bars (length L/2) and a linear
elastic rotational spring. The structure has a geometrical imperfection φ0

in its unloaded state (P = F = 0). Investigate also the stability of all
paths. The perturbation load F = ǫ4k/L, where ǫ is a dimensionless (second)
perturbation parameter.
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Solution. The total potential energy of the structure Π is

Π(ϕ;ϕ0, ǫ) =
1

2
k[2(ϕ−ϕ0)]

2−PL(cosϕ0−cosϕ)−
1

2
FL(sinϕ0−sinϕ) (2)

A necessary condition of an equilibrium state is the stationarity of the TPE,
thus the first variation of the total potential energy must vanish

δΠ =
dΠ

dϕ
δϕ =

[

4k(ϕ − ϕ0)− PL sinϕ+
1

2
FL cosϕ

]

δϕ = 0 ∀ δϕ 6= 0

(3)
An equilibrium path is thus defined by

P = 4

(

k

L

)

ϕ− ϕ0 +
1

2
ǫ cosϕ

sinϕ
(4)

This equation determines a unique path with respect to ϕ if the perturbation
parameters does not satisfy the condition ǫ = 2ϕ0. In such a case the
structure is a straight bar of length L at the “unloaded” state P = 0. Let us
examine this special case first.

Case ǫ = 2ϕ0 The equilibrium equation is now

dΠ

dϕ
= (ϕ− ϕ0)− PL sinϕ+ 4kϕ0 cosϕ (5)

= 4kϕ − PL sinϕ+ 4kϕ0(cosϕ− 1) = 0 (6)

and the two solutions are

ϕ = 0 primary path PI , (7)

P = 4

(

k

L

)

ϕ+ ϕ0(cosϕ− 1)

sinϕ
secondary path PII (8)

An equilibrium state is stable if the second variation of Π:

δ2Π =
d2Π

dϕ2
(δϕ)2 = (4k − PL cosϕ− 4kϕ0 sinϕ)(δϕ)

2 ∀ δϕ 6= 0 (9)
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is positive. Let us first examine stability of the primary path, i.e. when
ϕ = 0, thus

δ2Π|P =
d2Π

dϕ2

∣

∣

P
(δϕ)2 = (4k − PL)(δϕ)2 (10)

The primary path is thus stable when P < 4k/L and unstable when P >
4k/L, and the critical load is thus Pcr = 4k/L. Let us examine wheather the
critical point is a symmetric or asymmetric bifurcation point. The expression
of the third variation of the TPE is

δ3Π|P =
d3Π

dϕ3

∣

∣

P
(δϕ)3 (11)

where
d3Π

dϕ3
= −PL sinϕ− 4kϕ0 cosϕ (12)

At the critical point the value of the third derivatve of the TPE is on

d3Π

dϕ3

∣

∣

kr
= −4kϕ0 6= 0 (13)

thus the critical point is an asymmetric bifurcation point. The equilibrium
path is drawn in figure .

Case ǫ 6= 2ϕ0 Let us examine stability of the equilibrium path, defined in
(4). The second variation of the TPE

δ2Π =
d2Π

dϕ2
(δϕ)2 (14)

is obtained from the expression of the first variation (3). An equilibrium state
is stable if the second variation of the TPE is positive for all kinematically
admissible variations δϕ, thus in this single degree of freedom example it is
sufficient to investigate the sign of the second derivative of the TPE

d2Π

dϕ2
= 4k − PL cosϕ− 2kǫ sinϕ (15)

Let’s insert the expression of the equilibrium path (4) in the expression
above, gives

d2Π

dϕ2
= 4k

sinϕ− (ϕ− ϕ0) cosϕ− 1

2
ǫ

sinϕ
(16)

Let us examine the cases ǫ > 2ϕ0 and ǫ < 2ϕ0 separately.
In the case ǫ > 2ϕ0, the structure is below the horizonal line defined

by the supports before applying the compressive load, thus the structure
will continue to displace below the support line, thus ϕ < 0. Let us define
ǫ = 2ϕ0 + ǭ, and the expression (16) gives

d2Π

dϕ2
= 4k

sinϕ− ϕ cosϕ− ϕ0(1− cosϕ)− ǭ

sinϕ
(17)

Since now ϕ < 0 and both the nominator and denominator are negative,
thus δΠ is always positive, i.e. the path is stable when ǫ > 2ϕ0.

Stability of structures 4



The case ǫ < 2ϕ0 is more interesting. Now ϕ > 0 and the denominator
of the expression (16) is always positive but the nominator can have zero
points. These roots can be solved from the transcendental equation

sinϕ− (ϕ− ϕ0) cosϕ− 1

2
ǫ = 0. (18)

Since analytical solution is impossible, let’s try the asymptotic analysis as-
suming that the angles ϕ and ϕ0 are small, thus

sinϕ ≈ ϕ− 1

6
ϕ3, cosϕ ≈ 1− 1

2
ϕ2,

and the expression (18) will has a form

1

3
ϕ3 − 1

2
ϕ0ϕ

2 + (ϕ0 −
1

2
ǫ) = 0 (19)

The third order polynomial above can have both negative and positive values
for positive values of ϕ. To show that, let us fisrt calculate the minumum
point

ϕ2 − ϕ0ϕ = 0 =⇒ ϕ = ϕ0. (20)

The minimum value of the function defined in (19) (kun ϕ > 0) and the
condition for the nagativity we get an inequality (let’s define ǫ = ηϕ0)

−1

3
ϕ2

0 + 1− 1

2
η < 0 =⇒ η > 2− 1

3
ϕ2

0

Taking the condition ǫ < 2ϕ0 into account we’ll get a condition for the
perturbation parameter ǫ = ηϕ0:

2 > η > 2− 1

3
ϕ2

0 i.e. 2ϕ0 > ǫ > (2− 1

3
ϕ2

0)ϕ0

for the existence of a limit point on the equilibrium path. In the following
figure, some equilibrium paths are shown for some values of the perturbation
parameter ǫ

To sum up, the equilibrium paths of this structure can have

• a trivial equilibrium path and an asymmetric bifurcation point if ǫ =
2ϕ0. The secondary path is defined in equation (8).

• A stable equilibrium path without critical points if ǫ > 2ϕ0 or if ǫ /
(2− 1

3
ϕ2
0
)ϕ0.

• An equilibrium path has a limit point if (2− 1

3
ϕ2
0
)ϕ0 / ǫ / 2ϕ0,

Equilibrium paths shown in the figure below: λ = P/Pcr = PL/(4k).
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Problem 3. Determine the equilibrium paths of the simple structure shown,
consisting of rigid bars and elastic springs. Investigate also the stability of
the equilibrium paths. Investigate especially cases k1 = k2 and k1 = 5k2.
What kind of real structures these models imitate?

Solution. The total potential energy (TPE) expression is

Π = U + V

U =
1

2
k1L

2 sin2 ϕ+ k2u
2 +

1

2
k2[u− 2L(1 − cosϕ)]2

V = −Pu (21)

The equilibrium paths can be obtained from the stationarity condition of the
TPE:

δΠ =
∂Π

∂ϕ
δϕ +

∂Π

∂u
δu = 0 (22)

Since the variations of the displacement u and rotation ϕ are arbitrary, the
equilibrium paths are obtained from equations

∂Π

∂ϕ
= k1L

2 sinϕ cosϕ+ k2[u− 2L(1 − cosϕ)](−2L sinϕ) = 0

∂Π

∂u
= 2k2u+ k2[u− 2L(1− cosϕ)]− P = 0

(23)

After some manipulations we get

sinϕ[k1L
2 cosϕ− 2Lk2u+ 4k2L

2(1− cosϕ)] = 0 (24)

u =
P

3k2
+

2

3
L(1− cosϕ) (25)

Equation (24) is satisfied, if

sinϕ = 0 tai (k1 − 4k2)L
2 cosϕ+ 4k2L

2 − 2k2Lu = 0 (26)

If equation (25) is put into equation (26) and define k2 = k ja k1 = αk,
we get

⇒ P = kL
(

4 + (3
2
α− 4) cosϕ

)

(27)
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which is the projection of the secondary path onto the (ϕ,P )-plane. Accord-
ingly from equation (25) we get

cosϕ = 1 +
P

2kL
−

3

2

u

L
,

which is substituted into (27)

⇒ P =
kL

4− α

[

2α + (8− 3α)
u

L

]

,

which describes the projection of the secondary path onto the (u, P )-plane.
The primary paths are defined as

{

ϕ = 0

u =
P

3k

and the secondary paths







P = [4 + (3
2
α− 4) cosϕ]kL

P =
kL

4− α

[

2α+ (8− 3α)
u

L

]

Let us investigate the cases α = 1 ja α = 5.

α = 1 ⇒







P = (4− 5

2
cosϕ)kL

P =
1

3
kL

(

2 + 5
u

L

)
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We notice, that displacements are increasing more rapidly on the sec-
ondary path than in the primary path. However, the load can still be in-
creased over the critical value at the bifurcation point. (Pkr =

3

2
kL, thus the

secondary path is stable. In compressed thin plates such kind of behaviour
can be obtained. The strong stability of the secondary paths can be utilized
also in design for some cases.

α = 5 ⇒

{

P = (4 + 7

2
cosϕ)kL

P = −kL
(

10− 7
u

L

)

0

1

2

3

4

5

6

7

8

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

P

kL

ϕ

Stability of structures 9



0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

P

kL

u/L

-10+7*x
3*x

In this case the bifurcation load is much higher than in the previous
one. However, the secondary equilibrium path is now unstable. Shells, es-
pecially exhibit such kind of unstable behaviour after bifurcation. If the
post-buckling regime is unstable, such structures are imperfection sensitive,
which means that the critical load of an imperfect structure is much lower
than the theoretical bifurcation load. Imperfections are due to eccentricities,
geometrical deviations etc.
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