Stability of structures

1. exercise - equilibrium paths of simple structural models

Problem 1. Consider a beam on an elastic foundation. Idealize the beam as a discrete system of two equal length rigid bars connected by a linear rotational spring characterizing the bending rigidity of the beam. The foundation can be idealized with a linear translational spring. Determine all equilibrium paths and the critical load $P_{\text {cr }}$. The foundation coefficient is $c=\beta \pi^{2} E I / L^{4}$, where β is a dimensionless constant. The spring constants are thus $k_{\mathrm{T}}=\frac{1}{2} c L$ and $k_{\mathrm{R}}=\frac{1}{4} \pi^{2} E I / L$. Are the equilibrium paths near the critical point stable or unstable?

Solution. First, form the expressions for the horizontal displacement of the load point u and the vertical displacement of the joint:

$$
u=2 \cdot \frac{L}{2}(1-\cos (\varphi / 2)), \quad v=\frac{L}{2} \sin (\varphi / 2)
$$

The total potential energy is thus

$$
\begin{align*}
\Pi & =\frac{1}{2} k_{\mathrm{R}} \varphi^{2}+\frac{1}{2} k_{\mathrm{T}} v^{2}-P u \\
& =\frac{1}{2} k_{\mathrm{R}} \varphi^{2}+\frac{1}{2} k_{\mathrm{T}} \frac{L^{2}}{4} \sin ^{2}(\varphi / 2)-P L(1-\cos (\varphi / 2)) \\
& =\frac{1}{8} \pi^{2} \frac{E I}{L} \varphi^{2}+\frac{1}{16} \beta \pi^{2} \frac{E I}{L} \sin ^{2}(\varphi / 2)-P L(1-\cos (\varphi / 2)) \tag{1}
\end{align*}
$$

It is often advisable to make the expressions dimensionless, therefore let us denote

$$
P=\lambda \frac{\pi^{2} E I}{L^{2}}, \quad \tilde{\Pi}=\frac{L}{\pi^{2} E I} \Pi
$$

which results in

$$
\begin{equation*}
\tilde{\Pi}=\frac{1}{8} \varphi^{2}+\frac{1}{16} \beta \sin ^{2}(\varphi / 2)-\lambda(1-\cos (\varphi / 2)) \tag{2}
\end{equation*}
$$

Figure 1: Equilibrium paths.

Equilibrium equation is

$$
\begin{equation*}
\frac{\mathrm{d} \tilde{\Pi}}{\mathrm{~d} \varphi}=\frac{1}{4} \varphi+\frac{1}{16} \beta \sin (\varphi / 2) \cos (\varphi / 2)-\frac{1}{2} \lambda \sin (\varphi / 2)=0 \tag{3}
\end{equation*}
$$

It is immediately noticed that $\varphi=0$ is a solution for all values of the load parameter λ, the second solution is

$$
\begin{equation*}
\lambda=\frac{\varphi / 2}{\sin (\varphi / 2)}+\frac{1}{8} \beta \cos (\varphi / 2) \tag{4}
\end{equation*}
$$

These two equilibrium paths intersect at $\varphi=0, \lambda=1+\frac{1}{8} \beta$, which is the bifurcation point. The critical load is then

$$
P_{\mathrm{cr}}=\left(1+\frac{1}{8} \beta\right) \frac{\pi^{2} E I}{L^{2}}
$$

Equilibrium paths with different β-values are shown in Fig. 1. For the stability investigation of these paths, we need the second derivative of the potential

$$
\begin{align*}
\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} \varphi}\left(\frac{1}{4} \varphi+\frac{1}{16} \beta \sin (\varphi / 2) \cos (\varphi / 2)-\frac{1}{2} \lambda \sin (\varphi / 2)\right) \\
& =\frac{1}{4}+\frac{1}{32} \beta \cos \varphi-\frac{1}{4} \lambda \cos (\varphi / 2) \tag{5}
\end{align*}
$$

Path I. On the primary path \mathcal{P}_{I} when $\varphi=0$, thus

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I}}=\frac{1}{4}+\frac{1}{32} \beta-\frac{1}{4} \lambda . \tag{6}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \left.\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I}}>0, \quad \text { when } \quad \lambda<1+\frac{1}{8} \beta \tag{7}\\
& \left.\frac{\mathrm{~d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I}}=0, \quad \text { when } \quad \lambda=1+\frac{1}{8} \beta \tag{8}\\
& \left.\frac{\mathrm{~d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I}}<0, \quad \text { when } \quad \lambda>1+\frac{1}{8} \beta \tag{9}
\end{align*}
$$

and we can conclude that

$$
\mathcal{P}_{I} \quad \text { is } \quad \begin{cases}\text { stable when } & \lambda<1+\frac{1}{8} \beta \tag{10}\\ \text { unstable when } & \lambda>1+\frac{1}{8} \beta\end{cases}
$$

Stability of the bifurcation point $\lambda=1+\frac{1}{8} \beta$ cannot be determined from the second derivative.

Path II. Definition to the secondary equilibrium path $\mathcal{P}_{I I}$ is given in (4) and substituting it into (5) gives

$$
\begin{align*}
\left.\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I I}} & =\frac{1}{4}+\frac{1}{32} \beta \cos \varphi-\frac{1}{4}\left(\frac{\varphi / 2}{\sin (\varphi / 2)}+\frac{1}{8} \beta \cos (\varphi / 2)\right) \cos (\varphi / 2) \tag{11}\\
& =\frac{1}{4}-\frac{\varphi / 8}{\tan (\varphi / 2)}+\frac{1}{32} \beta\left(\cos \varphi-\cos ^{2}(\varphi / 2)\right) \tag{12}\\
& =\frac{1}{4}\left(1-\frac{\varphi / 2}{\tan (\varphi / 2)}-\frac{1}{8} \beta \sin ^{2}(\varphi / 2)\right) \tag{13}
\end{align*}
$$

It can be seen that depending on the value of β, the secondary path $\mathcal{P}_{I I}$ can be either stable or unstable.

Let us investigate stability of the secondary path near the critical point $\varphi=0, \lambda=1+\frac{1}{8} \beta$. Remember that

$$
\begin{aligned}
\sin x & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots \\
\cos x & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots \\
\tan x & =x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots \\
\frac{1}{1+x} & =1-x+x^{2}-x^{3}+\cdots
\end{aligned}
$$

Series expansion of (5) is

$$
\begin{align*}
\left.\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I I}} & =\frac{1}{4}\left(1-\frac{\varphi / 2}{\varphi / 2+\frac{1}{3}(\varphi / 2)^{3}}\right)-\frac{1}{32} \beta(\varphi / 2)^{2}\left(1-\frac{1}{6}(\varphi / 2)^{2}\right)+\text { h.o.t. } \\
& =\frac{1}{4}\left(\frac{1}{3}-\frac{1}{8} \beta\right)(\varphi / 2)^{2}+\text { h.o.t. } \tag{14}
\end{align*}
$$

Thus, it can be concluded that when $|\varphi| \ll 1$ then $\mathcal{P}_{I I}$ is initially stable if $\beta<8 / 3=2 \frac{2}{3}$ and unstable if $\beta>2 \frac{2}{3}$.

Notice that increasing the foundation stiffness, i.e. increasing β, increases the critical bifurcation load, but it makes the secondary paths (also known as post-buckling paths) more unstable!

Problem 2. Determine all equilibrium paths of the simple rigid bar-spring system. Investigate stability of these paths. Determine also the possible critical points and the corresponding load values $P_{\text {cr }}$. The constitutive relation of the spring is

$$
M=k_{1} \varphi+k_{2} \varphi^{3}, \quad k_{1}>0
$$

Investigate the effect of the nonlinear term k_{2}, i.e. use different values of the ratio $\alpha=k_{2} / k_{1}$.

Solution. The total potential energy is

$$
\begin{align*}
\Pi & =\int_{0}^{\varphi} M \mathrm{~d} \varphi-P L(1-\cos \varphi) \\
& =\frac{1}{2} k_{1} \varphi^{2}+\frac{1}{4} k_{2} \varphi^{4}-P L(1-\cos \varphi) \tag{15}
\end{align*}
$$

Equilibrium equation is

$$
\begin{equation*}
\frac{\mathrm{d} \Pi}{\mathrm{~d} \varphi}=k_{1} \varphi\left(1+\alpha \varphi^{2}\right)-P L \sin \varphi=0 \tag{16}
\end{equation*}
$$

Immediately we notice that $\varphi=0$ is a solution. Defining dimensionless load parameter as $P=\lambda k_{1} / L$, i.e. $\lambda=P L / k_{1}$, we have for the secondary path

$$
\begin{equation*}
\lambda=\frac{\varphi\left(1+\alpha \varphi^{2}\right)}{\sin \varphi} \tag{17}
\end{equation*}
$$

The primary- and secondary paths intersect at $\varphi=0, \lambda=1$, which is the critical bifurcation point.

Let us investigate stability of the paths.

$$
\begin{align*}
\tilde{\Pi}=\Pi / k_{1} & =\frac{1}{2} \varphi^{2}+\frac{1}{4} \alpha \varphi^{4}-\lambda(1-\cos \varphi) \tag{18}\\
\frac{\mathrm{d} \tilde{\Pi}}{\mathrm{~d} \varphi} & =\varphi+\alpha \varphi^{3}-\lambda \sin \varphi=0 \tag{19}\\
\frac{\mathrm{~d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}} & =1+3 \alpha \varphi^{2}-\lambda \cos \varphi \tag{20}
\end{align*}
$$

Path I. Primary path $\mathcal{P}_{I}: \varphi=0$, then

$$
\left.\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I}}\left\{\begin{array}{lll}
>0 & \text { when } \lambda<1 & \text { stable } \tag{21}\\
=0 & \text { when } \lambda=1 & ? \\
<0 & \text { when } \lambda>1 & \text { unstable }
\end{array}\right.
$$

Figure 2: Equilibrium paths with different values of α.

Path II. Secondary path $\mathcal{P}_{I I}$ defined in (17), then on $\mathcal{P}_{I I}$

$$
\begin{align*}
\left.\frac{\mathrm{d}^{2} \tilde{\Pi}}{\mathrm{~d} \varphi^{2}}\right|_{\mathcal{P}_{I I}} & =1+3 \alpha \varphi^{2}-\frac{\varphi}{\tan \varphi}-\alpha \frac{\varphi^{3}}{\tan \varphi} \\
& =1+3 \alpha \varphi^{2}-\left(1-\frac{1}{3} \varphi^{2}\right)-\alpha \varphi^{2}\left(1-\frac{1}{3} \varphi^{2}\right)+\text { h.o.t. } \\
& =\left(\frac{1}{3}+2 \alpha\right) \varphi^{2}+\text { h.o.t. } \tag{22}
\end{align*}
$$

Secondary path $\mathcal{P}_{I I}$ is thus stable if $\frac{1}{3}+2 \alpha>0$.

