
Stability of structures

1. exercise – equilibrium paths of simple structural models

Problem 1. Consider a beam on an elastic foundation. Idealize the beam
as a discrete system of two equal length rigid bars connected by a linear rota-
tional spring characterizing the bending rigidity of the beam. The foundation
can be idealized with a linear translational spring. Determine all equilibrium
paths and the critical load Pcr. The foundation coefficient is c = βπ2EI/L4,
where β is a dimensionless constant. The spring constants are thus kT = 1

2
cL

and kR = 1

4
π2EI/L. Are the equilibrium paths near the critical point stable

or unstable?
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Solution. First, form the expressions for the horizontal displacement of
the load point u and the vertical displacement of the joint:

u = 2 ·
L

2
(1 − cos(ϕ/2)), v =

L

2
sin(ϕ/2).

The total potential energy is thus

Π =
1

2
kRϕ

2 +
1

2
kTv

2 − Pu

=
1

2
kRϕ

2 +
1

2
kT

L2

4
sin2(ϕ/2) − PL(1− cos(ϕ/2))

=
1

8
π2

EI

L
ϕ2 +

1

16
βπ2

EI

L
sin2(ϕ/2) − PL(1− cos(ϕ/2)). (1)

It is often advisable to make the expressions dimensionless, therefore let us
denote

P = λ
π2EI

L2
, Π̃ =

L

π2EI
Π,

which results in

Π̃ =
1

8
ϕ2 +

1

16
β sin2(ϕ/2) − λ(1− cos(ϕ/2)). (2)
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Figure 1: Equilibrium paths.

Equilibrium equation is

dΠ̃

dϕ
=

1

4
ϕ+

1

16
β sin(ϕ/2) cos(ϕ/2) −

1

2
λ sin(ϕ/2) = 0. (3)

It is immediately noticed that ϕ = 0 is a solution for all values of the load
parameter λ, the second solution is

λ =
ϕ/2

sin(ϕ/2)
+

1

8
β cos(ϕ/2). (4)

These two equilibrium paths intersect at ϕ = 0, λ = 1 + 1

8
β, which is the

bifurcation point. The critical load is then

Pcr = (1 + 1

8
β)

π2EI

L2
.

Equilibrium paths with different β-values are shown in Fig. 1. For the
stability investigation of these paths, we need the second derivative of the
potential

d2Π̃

dϕ2
=

d

dϕ

(

1

4
ϕ+

1

16
β sin(ϕ/2) cos(ϕ/2) −

1

2
λ sin(ϕ/2)

)

=
1

4
+

1

32
β cosϕ−

1

4
λ cos(ϕ/2) (5)

Path I. On the primary path PI when ϕ = 0, thus

d2Π̃

dϕ2

∣

∣

∣

∣

PI

=
1

4
+

1

32
β −

1

4
λ. (6)
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Thus

d2Π̃

dϕ2

∣

∣

∣

∣

PI

> 0, when λ < 1 + 1

8
β, (7)

d2Π̃

dϕ2

∣

∣

∣

∣

PI

= 0, when λ = 1 + 1

8
β, (8)

d2Π̃

dϕ2

∣

∣

∣

∣

PI

< 0, when λ > 1 + 1

8
β, (9)

and we can conclude that

PI is

{

stable when λ < 1 + 1

8
β,

unstable when λ > 1 + 1

8
β.

(10)

Stability of the bifurcation point λ = 1+ 1

8
β cannot be determined from the

second derivative.

Path II. Definition to the secondary equilibrium path PII is given in (4)
and substituting it into (5) gives

d2Π̃

dϕ2

∣

∣

∣

∣

PII

=
1

4
+

1

32
β cosϕ−

1

4

(

ϕ/2

sin(ϕ/2)
+

1

8
β cos(ϕ/2)

)

cos(ϕ/2) (11)

=
1

4
−

ϕ/8

tan(ϕ/2)
+

1

32
β
(

cosϕ− cos2(ϕ/2)
)

(12)

=
1

4

(

1−
ϕ/2

tan(ϕ/2)
−

1

8
β sin2(ϕ/2)

)

. (13)

It can be seen that depending on the value of β, the secondary path PII can
be either stable or unstable.

Let us investigate stability of the secondary path near the critical point
ϕ = 0, λ = 1 + 1

8
β. Remember that

sinx = x−
1

3!
x3 +

1

5!
x5 − · · · ,

cos x = 1−
1

2!
x2 +

1

4!
x4 − · · · ,

tan x = x+
1

3
x3 +

2

15
x5 + · · · ,

1

1 + x
= 1− x+ x2 − x3 + · · · .

Series expansion of (5) is

d2Π̃

dϕ2

∣

∣

∣

∣

PII

=
1

4

(

1−
ϕ/2

ϕ/2 + 1

3
(ϕ/2)3

)

−
1

32
β(ϕ/2)2

(

1−
1

6
(ϕ/2)2

)

+ h.o.t.

=
1

4

(

1

3
−

1

8
β

)

(ϕ/2)2 + h.o.t. (14)

Thus, it can be concluded that when |ϕ| ≪ 1 then PII is initially stable if
β < 8/3 = 22

3
and unstable if β > 22

3
.

Notice that increasing the foundation stiffness, i.e. increasing β, increases
the critical bifurcation load, but it makes the secondary paths (also known
as post-buckling paths) more unstable!
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Problem 2. Determine all equilibrium paths of the simple rigid bar-spring
system. Investigate stability of these paths. Determine also the possible crit-
ical points and the corresponding load values Pcr. The constitutive relation
of the spring is

M = k1ϕ+ k2ϕ
3, k1 > 0.

Investigate the effect of the nonlinear term k2, i.e. use different values of the
ratio α = k2/k1.

P

L

Solution. The total potential energy is

Π =

∫ ϕ

0

Mdϕ− PL(1− cosϕ)

=
1

2
k1ϕ

2 +
1

4
k2ϕ

4 − PL(1− cosϕ). (15)

Equilibrium equation is

dΠ

dϕ
= k1ϕ(1 + αϕ2)− PL sinϕ = 0. (16)

Immediately we notice that ϕ = 0 is a solution. Defining dimensionless load
parameter as P = λk1/L, i.e. λ = PL/k1, we have for the secondary path

λ =
ϕ(1 + αϕ2)

sinϕ
. (17)

The primary- and secondary paths intersect at ϕ = 0, λ = 1, which is the
critical bifurcation point.

Let us investigate stability of the paths.

Π̃ = Π/k1 =
1

2
ϕ2 +

1

4
αϕ4 − λ(1− cosϕ), (18)

dΠ̃

dϕ
= ϕ+ αϕ3 − λ sinϕ = 0, (19)

d2Π̃

dϕ2
= 1 + 3αϕ2 − λ cosϕ. (20)

Path I. Primary path PI : ϕ = 0, then

d2Π̃

dϕ2

∣

∣

∣

∣

PI











> 0 whenλ < 1 stable

= 0 whenλ = 1 ?

< 0 whenλ > 1 unstable

(21)
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Figure 2: Equilibrium paths with different values of α.

Path II. Secondary path PII defined in (17), then on PII

d2Π̃

dϕ2

∣

∣

∣

∣

PII

= 1 + 3αϕ2 −
ϕ

tanϕ
− α

ϕ3

tanϕ

= 1 + 3αϕ2 − (1− 1

3
ϕ2)− αϕ2(1− 1

3
ϕ2) + h.o.t.

= (1
3
+ 2α)ϕ2 + h.o.t. (22)

Secondary path PII is thus stable if 1

3
+ 2α > 0.
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