Stability of structures

1. exercise — equilibrium paths of simple structural models

Problem 1. Consider a beam on an elastic foundation. Idealize the beam
as a discrete system of two equal length rigid bars connected by a linear rota-
tional spring characterizing the bending rigidity of the beam. The foundation
can be idealized with a linear translational spring. Determine all equilibrium
paths and the critical load P... The foundation coefficient is ¢ = fr?EI/L*,
where [ is a dimensionless constant. The spring constants are thus kt = %cL
and kr = %71'2EI /L. Are the equilibrium paths near the critical point stable
or unstable?
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Solution. First, form the expressions for the horizontal displacement of
the load point u and the vertical displacement of the joint:

u=2- g(l—cos(go/Q)), v = gsin(cp/Q).

The total potential energy is thus

1 1
I = —krp® + —ktv? — Pu

2 2
1. 5 1 L?
= §kRgo + §sz? sin“(p/2) — PL(1 — cos(p/2))
=37 ¥ + 165 7 sin (p/2) — PL(1 — cos(p/2)). (1)

It is often advisable to make the expressions dimensionless, therefore let us

denote )
T ET - L
A L2’ m2El
which results in
~ 1 2 1 .92
II = gcp + Eﬂsm (p/2) — M1 — cos(p/2)). (2)
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Figure 1: Equilibrium paths.

Equilibrium equation is

T = 10+ TgPsinle) cos(e/) - GAsin(e/D =0 ()

It is immediately noticed that ¢ = 0 is a solution for all values of the load
parameter A, the second solution is

__9/2
sin(p/2)

These two equilibrium paths intersect at ¢ = 0, A = 1 + %5, which is the
bifurcation point. The critical load is then

+ éﬂ cos(p/2). (4)
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Equilibrium paths with different S-values are shown in Fig. 1. For the
stability investigation of these paths, we need the second derivative of the
potential

I d /1 1 1, .
<Zs0 + 1—ﬁsin(gp/2) cos(p/2) — 5)\ Sln(go/2)>

de? ~ dy 6
_ 1 + i5(:08 - l)\(:os( /2) (5)
ISR I

Path I. On the primary path P; when ¢ = 0, thus

on
d?

1 1 1
=t gh (6)
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Thus

d211

— >0, when \<141ip, 7
421

——| =0, when A=1+1p, 8
d<p2 Py 8 ( )
421

F <0, when X\> 1+%,8, (9)
P P,

and we can conclude that

. stable when A1+ %ﬁ,
Pr is 1
unstable when A > 1+ gf.

(10)

Stability of the bifurcation point A =1+ % B cannot be determined from the
second derivative.

Path II. Definition to the secondary equilibrium path Pj; is given in (4)
and substituting it into (5) gives

-
= i — % + 3—125 (cos ¢ — cos?(ip/2)) (12)
— l _ 807/2 — l sin?
1 (1- 22— o). (13

It can be seen that depending on the value of 5, the secondary path P;; can
be either stable or unstable.

Let us investigate stability of the secondary path near the critical point
p=0, A=1+ %ﬂ. Remember that

: L s, 15
smx—x—gm —i-ﬁx —
Lo 14
cosle—ﬁx —i—zx — e,
t T L
anr =+ a2+ —x’ +---
3 15 '
1
— =l-—az+a® -+

+x

1
Series expansion of (5) is

I R /S B _1 o
= <1 v %(@/2)3> 325(90/2)2 <1 6(gp/2)2> + h.o.t.

- i <% - éﬁ) (9/2)% + hoo.t. (14)

Thus, it can be concluded that when || < 1 then Pjs is initially stable if
B < 8/3 =22 and unstable if 8 > 22.

Notice that increasing the foundation stiffness, i.e. increasing (3, increases
the critical bifurcation load, but it makes the secondary paths (also known
as post-buckling paths) more unstable!
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Problem 2. Determine all equilibrium paths of the simple rigid bar-spring
system. Investigate stability of these paths. Determine also the possible crit-
ical points and the corresponding load values P.,. The constitutive relation
of the spring is

M =Fkip+ kQQOg, k1 > 0.

Investigate the effect of the nonlinear term ko, i.e. use different values of the
ratio o = ko /k;.

P
A —
L
Solution. The total potential energy is
%)
1= / Mdy — PL(1 — cos p)
0
1 2 1 4
= §k1gp + Zkggp — PL(1 — cos ). (15)
Equilibrium equation is
dI1
P k1o(1 + ap?) — PLsing = 0. (16)
12

Immediately we notice that ¢ = 0 is a solution. Defining dimensionless load
parameter as P = A\k;/L, i.e. A\ = PL/ky, we have for the secondary path

1 2
. ) (17)
sin
The primary- and secondary paths intersect at ¢ = 0, A = 1, which is the
critical bifurcation point.

Let us investigate stability of the paths.
1,5, 1

M=1l/ky = 5¢° + jag' — A1~ cosg), (18)
dII
@:gp—kagp‘g’—)\singpzo, (19)
d211
d—902 =1+ 3@902 — A cos p. (20)

Path I. Primary path Pr: ¢ =0, then

oe >0 whenA <1 stable
d=1I
a2 =0 whenA=1 7 (21)
Pr <0 when\ >1 wunstable
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Figure 2: Equilibrium paths with different values of .

Path II. Secondary path Pr; defined in (17), then on Pr;

4211 3
5 =1+ 3ap? — LA 4
de? [p,, tan tan ¢
=1+3ap® — (1 -3¢ —ap?*(1 - 1¢*) + hot.
= (3 +20)¢” + ho.t. (22)

Secondary path Pjr is thus stable if é + 2a > 0.
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