Stability of structures

Home exercises 7 and 8

Home exercise 7. Consider a beam on an elastic foundation. Assume that the foundation can be modelled as the Winkler foundation and thus the the eigenvalue problem can be written as

$$
E I \frac{\mathrm{~d}^{4} v}{\mathrm{~d} x^{4}}+P \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+k v=0 .
$$

The foundation coefficient is $k=c b=\beta \pi^{2} E I / L^{4}$, where β is a dimensionless constant and b is the width of the beam. Express the compressive force P as $P=\lambda \pi^{2} E I / L^{2}$.

Make a small program using the finite difference method (or the finite element method) to compute the critical load of the beam.

1. Investigate the effect of the foundation stiffness c on the buckling load and mode when the foundation coefficient c varies in the range from soft soil $5 \mathrm{kN} / \mathrm{mm}^{2}$ to hard rock $1 \mathrm{MN} / \mathrm{mm}^{2}$.
2. Investigate the effect of mesh size h.
3. Based on the knowledge you have, how do you think the post-buckling behaviour and imperfection sensitivity changes with varying foundation stiffness.

You can use the values of C30 concrete for the beam and $L=6 \mathrm{~m}$, and $b=0.3 \mathrm{~m}$ and the height of the beam $H=2 b$.

Home exercise 8. Consider a simply supprted elastic plate on an elastic foundation. Now the eigenvalue problem has the form

$$
D\left(\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}\right)+N_{x} \frac{\partial^{2} w}{\partial x^{2}}+c w=0 .
$$

Express the foundation coefficient as $c=\beta \pi^{2} D / b^{4}$ and the compressive force (per length) $N_{x}=\lambda \pi^{2} D / b^{2}$.

Make a small program using the finite difference method to compute the critical load of the plate.

1. Investigate the effect of the foundation stiffness c on the buckling load and mode when the foundation coefficient c varies in the range from soft soil $5 \mathrm{kN} / \mathrm{mm}^{2}$ to hard rock $1 \mathrm{MN} / \mathrm{mm}^{2}$.
2. Investigate the effect of mesh size h.
3. Based on the knowledge you have, how do you think the post-buckling behaviour and imperfection sensitivity changes with varying foundation stiffness.

You can use the values of C30 concrete for the plate and $b=6 \mathrm{~m}$, and the thickness of the plate $t=0.3 \mathrm{~m}$.

