Stability of structures

Home exercises 3 and 4

Home exercise 3. Determine the asymptotic post-buckling behaviour of the column in exercise 1.
Hint. Start from the exact expression of the curvature (in Lagrangian formulation)

$$
\kappa=\frac{v^{\prime \prime}}{\sqrt{1-\left(v^{\prime}\right)^{2}}}
$$

resulting in the potential energy expression

$$
\Pi(v)=\frac{1}{2} \int_{0}^{L} E I \kappa^{2} \mathrm{~d} x-P \int_{0}^{L}\left(1-\sqrt{1-\left(v^{\prime}\right)^{2}}\right) \mathrm{d} x
$$

Use series eqpansion up to fourth order and the displacement field in the form $v(x)=a v_{1}(x)$ where a is the unknown amplitude and $v_{1}(x)$ is the buckling mode corresponding to the lowest buckling load.

Home exercise 4. For the structure shown below determine $P_{\text {cr }}$ starting from the differential equation. You can use the following values for the non-dimensional coefficients: $\alpha=2, \beta=1$. Compare the results to problem 2 in exercise 4 , what are your conclusions?

Solutions to the home exercises should be returned as pdf-files in the Moodle area of the course at latest 3.3.2019.

