Stability of structures

6. exercise – torsional and lateral buckling

1. Determine the critical load $P_{\rm cr}$ for a centrally compressed clamped beam. The crosssection is shown below and b = 10t, $\nu = 0$. Determine the critical load as a function of the length.

2. Determine the critical lateral buckling moment $M_{\rm cr}$ for the beam shown below. The support on the rhs side prevents vertical and lateral displacements but the cross-section can rotate about the support. The cross-section is rectangular with dimensions $b \times h$ where $h \gg b$.

3. Determine the critical moment $M_{\rm cr}$ for the beam shown below, the proportions are $b = 10t, L = 20b, \nu = 1/3$. What is the result if M is negative?

