Stability of structures

5. exercise - beam-columns, inelastic buckling

1. A beam with circular cross-section has an initial deflection $v_{0}(x)=v_{0} \sin (\pi x / L)$. What is the safety factor with respect to the yield limit if the compressive load has the value $P=50 \mathrm{kN}$? The yield stress is $\sigma_{\mathrm{y}}=220 \mathrm{MPa}$ and the Young's modulus $E=210 \mathrm{GPa}$. The amplitude of the initial deflection is $v_{0}=L / 1000$.

2. Determine the bending moment distribution at the load levels $P / P_{E}=0.25,0.50$ and 0.75 , where P_{E} is the critical load of the buckling problem. Determine also the expressions of the support moments at both ends and the bending moment in the midspan as a function of the compressive force.

3. The buckling length of a uniform straight column is L_{n}. The stress-strain curve of the material is quadratic $\left(\sigma=A \varepsilon^{2}+B \varepsilon+C\right)$, which has an apex at $\sigma_{0}=392 \mathrm{MPa}$, $\varepsilon_{0}=0.002$. Determine the expression for the tangent modulus $E_{\mathrm{t}}(\sigma)$ and show that the critical load according to the tangent modulus theory is $P_{\text {cr }}=2 \sigma_{0} A(\sqrt{K+1}) / K$, where $K=\left(\varepsilon_{0} L_{n}^{2} A / \pi^{2} I\right)^{2}$.
Calculate the value of the critical load for the two columns shown below. Measures shown in mm.

4. Determine the dependence of the critical stress σ_{cr} on the slenderness $\lambda=L_{n} / i$ (where L_{n} is the buckling length and $i=\sqrt{I / A}$ is the radius of gyration of the cross-section) for a uniform centrally compressed straight column. The tangent modulus E_{t} has the form

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \epsilon}=E_{\mathrm{t}}=E \frac{\sigma_{\mathrm{y}}-\sigma}{\sigma_{\mathrm{y}}-c \sigma},
$$

where σ_{y} is the yield stress and c is an additional material constant. Draw the figure showing the critical buckling stress as a function of the slenderness in a $\left(\sigma_{\mathrm{cr}} / \sigma_{\mathrm{y}}\right)-\lambda$ -coordinate system with $\left(\sigma_{\mathrm{cr}} / \sigma_{\mathrm{y}}\right) \in[0,1], \lambda \in[0,200]$ Use the value $c=0,9$ and ratios $E / \sigma_{\mathrm{y}}=500$ (steel) and $E / \sigma_{\mathrm{y}}=200$ (aluminium, pinewood). Draw also in the same figure the elastic buckling stress.

