

Stability of structures

5. exercise – beam-columns, inelastic buckling

1. A beam with circular cross-section has an initial deflection $v_0(x) = v_0 \sin(\pi x/L)$. What is the safety factor with respect to the yield limit if the compressive load has the value P = 50 kN? The yield stress is $\sigma_y = 220$ MPa and the Young's modulus E = 210 GPa. The amplitude of the initial deflection is $v_0 = L/1000$.

2. Determine the bending moment distribution at the load levels $P/P_E = 0.25$, 0.50 and 0.75, where P_E is the critical load of the buckling problem. Determine also the expressions of the support moments at both ends and the bending moment in the midspan as a function of the compressive force.

3. The buckling length of a uniform straight column is L_n . The stress-strain curve of the material is quadratic ($\sigma = A\varepsilon^2 + B\varepsilon + C$), which has an apex at $\sigma_0 = 392$ MPa, $\varepsilon_0 = 0.002$. Determine the expression for the tangent modulus $E_t(\sigma)$ and show that the critical load according to the tangent modulus theory is $P_{\rm cr} = 2\sigma_0 A(\sqrt{K+1})/K$, where $K = (\varepsilon_0 L_n^2 A/\pi^2 I)^2$.

Calculate the value of the critical load for the two columns shown below. Measures shown in mm.

4. Determine the dependence of the critical stress $\sigma_{\rm cr}$ on the slenderness $\lambda = L_n/i$ (where L_n is the buckling length and $i = \sqrt{I/A}$ is the radius of gyration of the cross-section) for a uniform centrally compressed straight column. The tangent modulus E_t has the form

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\epsilon} = E_{\mathrm{t}} = E \frac{\sigma_{\mathrm{y}} - \sigma}{\sigma_{\mathrm{y}} - c\sigma}$$

where σ_y is the yield stress and c is an additional material constant. Draw the figure showing the critical buckling stress as a function of the slenderness in a $(\sigma_{\rm cr}/\sigma_y) - \lambda$ -coordinate system with $(\sigma_{\rm cr}/\sigma_y) \in [0, 1], \lambda \in [0, 200]$ Use the value c = 0, 9 and ratios $E/\sigma_y = 500$ (steel) and $E/\sigma_y = 200$ (aluminium, pinewood). Draw also in the same figure the elastic buckling stress.