RAK-33030 Stability of structures

1. exercise - equilibrium paths of simple structural models

1. Consider a beam on an elastic foundation. Idealize the beam as a discrete system of two equal length rigid bars connected by a linear rotational spring characterizing the bending rigidity of the beam. The foundation can be idealized with a linear translational spring. Determine all equilibrium paths and the critical load $P_{\text {cr }}$. The foundation coefficient is $c=\beta \pi^{2} E I / L^{4}$, where β is a dimensionless constant. The spring constants are thus $k_{\mathrm{T}}=\frac{1}{2} c L$ and $k_{\mathrm{R}}=\frac{1}{4} \pi^{2} E I / L$. Are the equilibrium paths near the critical point stable or unstable?

2. Determine all equilibrium paths of the simple rigid bar-spring system. Investigate stability of these paths. Determine also the possible critical points and the corresponding load values $P_{\text {cr }}$. The constitutive relation of the spring is

$$
M=k_{1} \phi+k_{2} \phi^{3}, \quad k_{1}>0
$$

Investigate the effect of the nonlinear term k_{2}, i.e. use different values of the ratio $\alpha=k_{2} / k_{1}$.

