
\[\frac{2EI}{L^2} \quad \frac{EI}{\Delta} \quad P \]

Jactaan pilari, kahteen elementtiin

\[\Rightarrow \text{kolme vapausasteet} \]

\[P = \lambda \frac{EI}{L^2} \]

Saatetaan yleistetty lineaarinen ominaisarvohtio

\[K = \lambda \mathbf{S} \mathbf{X} \]

joissa \(K \) on systemin lineaarisen järjestelyyn muodostaa systemin geometrian järjestelyyn muodostaa.

Elementtikohtaiset matriisit Eulerin-Bernoullin palkkiehtorion elementteille ovat

\[K^{(e)} = \frac{EI}{L^2} \begin{bmatrix}
12/E & 6/E & -12/E & 0 \\
6/E & 4 & -6/E & 2 \\
-12/E & 2 & 12/E & -6/E \\
0 & 0 & 0 & 4
\end{bmatrix} \text{ symm.} \]

\[\mathbf{S}^{(e)} = \begin{bmatrix}
\frac{6}{5E} & 1 & -\frac{6}{5E} & 1 \\
\frac{2E}{15} & \frac{1}{10} & -\frac{2E}{15} & \frac{1}{10} \\
\frac{6}{5E} & -\frac{2E}{15} & \frac{6}{5E} & -\frac{2E}{15} \\
0 & 0 & 0 & 2E/15
\end{bmatrix} \text{ symm.} \]

\[\sum \mathbf{S}^{(e)} = \mathbf{N}^{(e)} + \mathbf{N}^{(v)} = \lambda \frac{EI}{L^2} \]

Vastusten palkkallisia vapausasteita \(\mathbf{N}_1, \mathbf{N}_2, \mathbf{N}_3, \mathbf{N}_4 \).

Elementtien palkkallisten vapausasteiden ja

rahasten globaalijen vapausasteiden välillä

on seuraavan laimin räppäräys:

(merkit: globaali, vap. ast. \(\delta_1, \delta_2, \delta_3 \))

\[
\begin{array}{c|cccc}
\text{elem} & 1 & 2 & 3 & 4 \\
\hline
1 & - & - & 1 & 2 \\
2 & 1 & 2 & - & 3 \\
\end{array}
\]

\[K_{11} = K_{11}^1 + K_{11}^2 = \frac{8}{L^3} \cdot 2EI + \frac{8}{L^3} EI = 28 \frac{EI}{L^3}\]

\[K_{12} = K_{12}^1 + K_{12}^2 = -24 \frac{EI}{L^2}\]

\[K_{13} = K_{13}^1 = 24 \frac{EI}{L^2}\]

\[K_{22} = K_{22}^1 + K_{22}^2 = 16 \frac{EI}{L} + 8 \frac{EI}{L} = 24 \frac{EI}{L}\]

\[K_{23} = K_{23}^1 = 4 \frac{EI}{L}\]

\[K_{33} = K_{33}^1 = 4 \frac{EI}{L}\]

\[
\begin{align*}
S_{11} &= S_{11}^1 + S_{11}^2 = \frac{P}{5L} = \frac{24}{5L} \\
S_{12} &= S_{12}^1 + S_{12}^2 = 0 \\
S_{22} &= S_{22}^1 + S_{22}^2 = \frac{P}{15} \\
S_{23} &= S_{23}^1 = -\frac{P}{60} = -\frac{24}{60} \\
S_{33} &= S_{33}^1 = \frac{P}{15} = \frac{24}{15L}
\end{align*}
\]

\[\begin{bmatrix}
-288/12 & -24/L & 24/L \\
-24/L & 4 & 8
\end{bmatrix}
\begin{bmatrix}
\delta_1 \\
\delta_2
\end{bmatrix}
= \frac{EI}{L}
\begin{bmatrix}
\frac{24}{5L} & 0 \\
4/15 & -1/60 & 1/15
\end{bmatrix}
\begin{bmatrix}
\delta_1 \\
\delta_2 \\
\delta_3
\end{bmatrix}
\]

Tämä voidaan ommijsi jaa liittää

vastavasti omiai, vekkain ratkaisi.

jos merkitään \(\bar{\delta} = \delta_1/L \), saadaan sistem

leirinlaskuna vesen muotoinen

\[
\begin{bmatrix}
-288 & -24 & 24 & -17/60 \\
24 & -17/15 & 4 & 17/60 \\
-17/15 & 4 & -17/60 & 8
\end{bmatrix}
\begin{bmatrix}
\bar{\delta}_1 \\
\delta_2 \\
\delta_3
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \\
0
\end{bmatrix}
\]

jos leimalla leirinparametriin on arvo

saadaan ehdolla että harrainmatristi, determinantin
on oltava nolla. \(\Rightarrow \lambda_{kr} = 26.316 \)

Tutkimusta niin ratkaisun suppenemisista ja sitä
kevyntä höyhennessä, joka on elementtien merkintätavalla
ratkaisan virheen arvioiota ja problemaan
ratkaisee virheen yhdeksän numeron ratkaisun tuloksista.

Mikäli tunteaan edeltävän höyhen elementin
suppenemisnopeudan (tarhasilvelle suureelle) eli
virheen asymptootinen pienennemisnopeudan virheen
asiasta, joka oli kommente

\[
\text{virhe} \sim C h^n
\]

jossa \(C \) on positiivinen, \(h \) verkko-paraametri
(= suurimman elementin korkiksiin pituus) ja \(n \) on
keskiarvolla suurena suppenemisnopeudan
parametrin
arvio suureelle saadun kahden alla virheen
kohdella eri elementti-arvoilla joitakin
ratkaisun arvoja vuorotellen

\[
\lambda_1 = \lambda(h_1), \quad \lambda_2 = \lambda(h_2)
\]

Tarkasteleena näin erilaisena
krüüttген huorma-paraametrin
ratkaisan arvoen elektroapeloon ja

\[
\begin{align*}
\lambda_1 &= \lambda_0 + C h_{1}^n \\
\lambda_2 &= \lambda_0 + C h_{2}^n
\end{align*}
\]

eliminoietaan
\[
C = (\lambda_1 - \lambda_0) h_{1}^{-n}
\]

ja sijoitetaan olemassa ollut

\[
\lambda_2 = \lambda_0 + (\lambda_1 - \lambda_0) \left(\frac{h_2}{h_1} \right)^n
\]

joista ratkaisut

\[
\lambda_0 = \frac{\lambda_2 - \lambda_1 \left(\frac{h_2}{h_1} \right)^n}{1 - \left(\frac{h_2}{h_1} \right)^n}
\]
Obessa taulukot 2 ja 10 elementin vertailu laskettuna
(tasavälinen elem. jaks.)

2 elem
1 26.316455
2 107.61133

10 elem
1 25.184801
2 82.825679

Eulerin-Bernoullin elementin ominaisarvojen supremais- *nepus on n = 4, jaa nyt h₁ = 4/12, h₂ = 4/10
* = h₂ / h₁ = 0.5
Alimman omin. arvon extrapoloinen ervo
\[I'_1 = \frac{25.185 - 26.316 (\frac{4}{5})^4}{1 - (\frac{4}{5})^4} \]
\[= 25.1832 \]

Toisen omin. arvon extrapoloinen ervo
\[I'_2 = \frac{25.185 - 26.316 (\frac{4}{5})^4}{1 - (\frac{4}{5})^4} \]
\[= 25.786 \]

Miksi supremaisnepu on tällä tavalla voidaan
sovella rajalle extrapolointia L. Richardson
 extrapolointiä.

Lasketaan nyt myös 10 ja 50 elementillä-
\[I'_1 = 25.1831 \]
\[I'_2 = 25.780 \]

Sovellataan extrapolointiä rajalle elemenn
nurjicka laskennan suhteen merkit\[\overline{h} = h / l \]

\[I'_{10} = 26.316 \]
\[I'_{10} = 25.185 \]
\[I'_{20} = 25.183 \]

(4. Numerin neljän matemaattisivu 109)

\[I'_1 = I'_{10} + \frac{I'_{10} - I'_{20}}{\overline{h} / h_1} - 1 = 24.90225 \]

\[I'_2 = I'_{20} + \frac{I'_{20} - I'_{10}}{\overline{h} / h_2} - 1 = 25.1825 \]
\[A_{22} = A_{21} + \frac{A_{21} - A_{11}}{h_0} - 1 = 25.194 \]

\[\Rightarrow \text{Parameter erinio kriitiselbo keuruvelle nur} \]
\[P_{cr} = 25.19 \text{ ESI/L}^2 \]
\[\text{joke kriitishe om keurort erinio kriitio kriitio} A_{22}. \]

Pieniin maankin usekkat olutteet myöös seveltee johde tappamisvointa u
myyyn meri myönt tehtävä.

\[N_{akhir} = \frac{1}{\lambda} \text{ ovut merinennelvi} \]
H2.45

\[
EI \frac{d^4 w}{dx^4} = -P
\]

\[
P_{cr} = 2
\]

differenssimetelmällä.

\[
v'''' + k^2 v'' = 0
\]

korvataan differenssimuodokkeella

\[
\frac{L}{h^2} \left(\frac{d^2 v}{dx^2} - 4 \frac{v}{h^2} + 6 \frac{d^2 v}{dx^2} - 4 \frac{d^3 v}{dx^3} + \frac{d^4 v}{dx^4} \right) + \frac{k^2}{h^2} \left(v_{i-2} - 2 v_{i} + v_{i+2} \right) = 0
\]

otetaan pisteessä \(i \):

\[
h_i = x_i + 1
\]

on hilavien \(k^2 = \frac{P}{EI} \),

seadaan differenssimuodokkeeksi:

\[
1 \quad 2 \quad 2 \quad 1
\]

missä \(A = k^2 h^2 \)

1) hilaväli: \(h = \frac{L}{2} \)

\[
0 \quad 0 \quad 1 \quad 1 \quad 0
\]

RE: \(v_0 = v_2 = 0 \)

\[
v_0' = 0 \Rightarrow v_1 = v_1, \text{ ja } v_2' = 0 \Rightarrow v_2 = v_1
\]

differenssijärjestelmä pisteessä 1:

\[
v_1 + (6-2A) v_2 + v_1 = 0
\]

\[
\Rightarrow (8-2A) v_2 = 0 \Rightarrow v_2 = 0 \text{ suora +sp. } \forall \alpha \text{ ei monialusta}
\]

tai \(8-2A = 0 \Rightarrow A = 4 \Rightarrow P_{cr} = \frac{8EI}{h^2} \), \(h = \frac{L}{2} \)

\[
\Rightarrow P_{cr} = \frac{16EI}{L^2}
\]

(merk. diff. oppi. seuraa brittien lausunnoita, jorjaa \(P_{cr} : 16 \))

Analyyttinen tehtävä on \(P_{cr} = 4 \pi^2 \frac{EI}{L^2} \)

\[
\Rightarrow \text{subbeeellinen virhe } e_{cr} = \left| \frac{P_{cr} - \tilde{P}_{cr}}{P_{cr}} \right| = 0,595 \text{ eli. } 59.5\%
\]

2) hilaväli: \(h = \frac{L}{4} \)

(representti symmetriaa hylästely)

\[
-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5
\]

RE: \(v_0 = v_4 = 0, \) \(v_1 = v_1, \) \(v_5 = v_5 \)

symmetria \(v_2 = v_3 \)

piste 1: \((6-2A) v_2 + (3-4) v_3 + v_1 = 0 \)

\[
\Rightarrow \left[\begin{array}{cc}
6-2A & 1-4 \\
3-4 & 3-2
\end{array} \right] \left\{ \begin{array}{c}
v_1 \\
v_2
\end{array} \right\} = \left\{ \begin{array}{c}
0 \\
0
\end{array} \right\}
\]

eli: \(K \bar{v} = 0 \), jotta ei triviali; reaktioi \(\Rightarrow \det K = 0 \)
$a^2 - 6a + 1 = 0 \Rightarrow a = 2 \pm \sqrt{3}$

$$P_{cr} = \frac{72EI}{L^2} \Rightarrow e_r = 0,089 \quad \text{eli} \quad 8,9\%$$

$3^0)$ hilavläh.: $h = \frac{L}{6}$

$$\text{RE: } v_0 = v_5 = 0, \quad v_1 = v_4, \quad v_2 = v_7$$

$$v_1 + (a-2) v_4 + (a-4) v_7 + v_2 = 0$$

$$v_1 + (a-2) v_4 + (a-2) v_7 + (a-4) v_7 + v_2 = 0$$

$$= \begin{bmatrix} 7-2a & a-4 & 1 & v_4 \\ 2 & 7-2a & a-4 & v_7 \\ 1 & 2 & 3 & v_3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{eli} \quad (7-2a)[(7-2a)(7-a) - (a-4)^2] - (a-4)[(7-a)(3-a) - (a-4)] + [(a-4)(7-a) - (a-4)] = 0$$

$$\Rightarrow a^3 + 7a^2 - 19a + 12 = 0$$

$$\Rightarrow (a-1)(a-2)(a-3) = 0 \Rightarrow a_{cr} = 1$$

$$\Rightarrow \frac{P_{cr}}{L^2} = 0,089 \quad \text{eli} \quad 8,9\%$$

Suoritetaan $u = \text{suppennemispienenanstalou}$$

Numerisessa analyysissä tiedämme: $\|E\| = \|u\| \leq Ch^p$, ($\#$)

missä $\|E\|$: on jokin normi (u: teräheka rata, $\|\|$: liitin) ja C on rautakäytässä liitinparametrien vaikutus ja potenssi p ilmaisee suppennemisvahdun (menetelmä, sitä parempi mitä suurempi p on; tietyn osikselle approksimatoille on kriittinen olemassa sille ominainen suurin mahdollinen p. jos p on suurin mahdollinen k.o. approksimaatioasteelle, sen on menetelmä optimaali.), h: verkkokäyröllinen liitin, hilavläh.

Terhastelaudan $u = \text{tilannetta puristaville edelle liikumatot}$ ($-\log \frac{h}{L}$, $-\log |\epsilon|$) koordinaattitaulukon

joista voidaan orioonla minkälainen tila

tarvittaisiin, joiden poistautunut 4% in terhastelauksen

terhastelou teoromassa P_{cr}.

*$)$ koskien on tihein asynsosatien tuloks, eli $\|E\| \leq Ch^p$ kun $h \rightarrow 0$
<table>
<thead>
<tr>
<th>h/L</th>
<th>-log(h/L)</th>
<th>log(εr)</th>
<th>εr</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>0.301</td>
<td>-0.225</td>
<td>0.595</td>
</tr>
<tr>
<td>117</td>
<td>0.602</td>
<td>-0.729</td>
<td>0.183</td>
</tr>
<tr>
<td>116</td>
<td>0.778</td>
<td>-1.055</td>
<td>0.088</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1.398</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Vaaditun terkkunvux 4%

Optimaalinen tulos virheelle $|εr| = \frac{|P_{ir} - P_{εr}|}{P_{ir}}$

pitäisi k. o. approksimaatiolle olle

$|εr| \leq \chi^2$.

Tällä seudulla numerisesti tulevat graafit

ovat em. tulokseen. 1° ja 2° perusvuelle

seadaan $P = 1.66$ ja 2° ja 3° perusvuelle

seadaan $P = 1.88$ (ks. oheisem

lukio).

$y = \log(εr)$

Vaaditun virheen rea

$x = -\log(h/L)$

Vaaditun $y_v = -1.398$ $x_v = ?$

lin. extrapolaatio

$y_v - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x_v - x_1) \Rightarrow x_v = x_1 + \frac{x_2 - x_1}{y_2 - y_1} (y_v - y_1)$

1° ja 2° perusvuelle

$x_v = 1.009$ eli. $x > x_v$ $\Rightarrow \frac{h}{L} < 10^{-x_v}$

$\Rightarrow \sim 10.2$ osavälissä

2° ja 3° perusvuelle

$x_v = 0.9604$ eli. $x > x_v$ $\Rightarrow \frac{h}{L} < 10^{-x_v}$ $= 0.1096$

$\Rightarrow \sim 9.1$ osavälissä

Esillä esitetyn perusvuelle voitenee olettaa että $εr \leq 0.04$

lain taka ja taka 9 osavälissä.
Laskettessa erä hintavöileillä (verkolle) voidaan sanoa, että sääteet ekstrapoloinnille saadaan hyvän tarkka arvo holotulille suurelle

Sovelletaan alkuja rajalle ekstrapoloinnille L, Richardsonin ekstrapoloinnilla.

Merkintöön: \(P = \frac{AE}{L^2} \) ja \(h = \frac{b}{L} \)

\[
\lambda_{00} = 16 \quad \frac{b_0}{h_1} = \frac{1}{2} \quad \lambda_{ik} = \lambda_{i,k-1} + \frac{\lambda_{i,k-1} - \lambda_{i-1,k-1}}{h_{ik}} - 1 \quad \frac{h_{ik}}{h_i}
\]

(k.s. Numeroinen Matematiikka sivu 109)

\[
\lambda_{11} = \lambda_{10} + \frac{\lambda_{10} - \lambda_{00}}{\frac{b_0}{h_1} - 1} = 32 + \frac{32-16}{1/12} = 48
\]

\[
\lambda_{21} = \lambda_{20} + \frac{\lambda_{20} - \lambda_{10}}{\frac{b_1}{h_2} - 1} = 72 + \frac{72-32}{1/16} = 44
\]

\[
\lambda_{22} = \lambda_{21} + \frac{\lambda_{21} - \lambda_{11}}{\frac{b_2}{h_2} - 1} = 44 + \frac{44-48}{1/16} = 42
\]

\(\Rightarrow \) Parametit arvio hintavöille liukumelle mit \(\text{Per} = 42 \frac{AE}{L^2} \)

(virhe 6,78 %)

Mikäli supennemismaksu on tiedettynä a priori videan sini tai tette lukittu hyväksi. Jos sii srr \(\text{er} \sim \text{Ch}^p \), jossa \(p = 2 \) liukumäärän molekyylille, saadaan

\(\text{er} \sim \text{Ch}^p \Rightarrow \text{er} \sim \text{Per} + \text{Ch}^p \)

\(\Rightarrow \lambda \sim \lambda_{cr} + \text{Ch}^p \)

Jos \(p \) tunnetaan avat \(C \) ja \(\text{Av} \) ratkeistuvissa kun tunnetaan molekyylin liukumäärä \((\bar{b}_1, A_i) \) ja \((\bar{b}_2, A_2) \).
Suiis:

\[\bar{\lambda}_1 = \lambda_{cr} + C h_1^p \]
\[\bar{\lambda}_2 = \lambda_{cr} + C h_2^p \]

\[C = \frac{\bar{\lambda}_2 - \bar{\lambda}_1}{h_2^p - h_1^p} \Rightarrow \lambda_{cr} = \frac{\bar{\lambda}_2 - \bar{\lambda}_1}{h_2^p - h_1^p} \]

Sowelletsen niet probleemamme \(p = 2 \) in

a)

\[\bar{\lambda}_1 = 16 \]
\[\bar{\lambda}_2 = 52 \]
\[h_1 = \frac{1}{2} \]
\[h_2 = \frac{1}{4} \]

\[\Rightarrow \lambda_{cr} = 32 - \frac{32 - 16}{(\frac{1}{2})^2 - (\frac{1}{4})^2} \left(\frac{1}{2} \right)^2 \]

\[= 37 \frac{1}{2} \] (vibbe 5,44%)

b)

\[\bar{\lambda}_1 = 32 \]
\[\bar{\lambda}_2 = 36 \]
\[h_1 = \frac{1}{4} \]
\[h_2 = \frac{1}{6} \]

\[\Rightarrow \lambda_{cr} = 36 - \frac{36 - 32}{(\frac{1}{4})^2 - (\frac{1}{6})^2} \left(\frac{1}{4} \right)^2 \]

\[= 39 \frac{1}{5} \] (vibbe 0,70%)
sillä \(\max((t-t_{j-1})^2(t-t_j)^2) = \frac{h^4}{2} \) kuvion 2,5 perusteella.

\[y = (t-t_{j-1})^2(t-t_j)^2 \]

Kuva 2.5. Virhefunktion \((t-t_{j-1})^2(t-t_j)^2\) kuvaaja.

Haluttu tulos saadaan kirjoittamalla \(|x(t) - u_3(t)| = |x(t) - p_3(t) + p_3(t) - u_3(t)| \leq |x(t) - p_3(t)| + |p_3(t) - u_3(t)| \). Jälkimmäiselle erotukselle saadaan työllään laskun tuloksena arvio

\[|p_3(t) - u_3(t)| \leq \frac{1}{36} h^4 |x^{(4)}| \text{sa}, \text{ joten} \]

\[(2.81) \quad |x(t) - u_3(t)| \leq \frac{5}{364} h^4 |x^{(4)}| \text{sa}. \]

Lisaamalla elementtien lukumäärä saadaan virhe pienenee \(\frac{5}{364} h^4 |x^{(4)}| \text{sa}. \) Virhevirtoissa ei myöskään esim. kyvyn korkea kertaluvun derivaattoja.

2.3.6 RICHARDSONIN EKSTRAPOLOINTI

Yleensä interpoilinnin virhe kasvaa nopeasti suureksi, jos siirrytään väliin \([t_0,t_N]\) ulkopuolelle eli käytetään interpoilivaa funktiota ekstrapoloointiin.

Erilaisista tilanteissa ekstrapolointi on kuitenkin tehokasta.

Laskettava suure saattaa riippua parametrista \(h \), esimerkiksi erotusosamäärän voimassa.

Esimerkissä kahdesta ensimmäisestä yhtälöystä voidaan ratkaista
\[
a_0 = \frac{h_1D_{00} - h_0D_{10}}{h_1 - h_0} + \frac{h_1^2}{h_1 - h_0} D_{10} + \frac{h_0^2}{h_1 - h_0} D_{00} + \ldots
\]
jos \(h_1 \neq h_0 \) on havaittu, että \(D_{11} = a_0 + O(h_0^2) \), kun \(D_{00} = a_0 + O(h_0^2) \).

Yleisesti voidaan helposti laskea, että
\[
D_{1k - a_0 = O(h_k^{k+1})},
\]
jos \(a_k \neq 0, k = 1(1)k \). Lisäksi pätee
\[
\lim_{k \to \infty} D_{1k} - a_0 = 0.
\]

Tavallisesti ekstrapolointi keskeyttää tunnetut, kun n on jokin pieni kokonaisluku (2..4). Ekstrapoloinnin virheellä voidaan johtaa virhekaavaa Lagrangea lineariapunoinnin virhekaavan avulla ja käytetään sitä hyvää ekstrapoloinnin keskeyttämiseen, kun haluttu tarkkuus on saavutettu.

Ekstrapolointi voidaan soveltaa myös, jos \(D(h) \) on sarjaksetin\(n \) etenemä\(n \) potenssien mukaan (vaikka joka toinen \(a_i = 0 \) valitsemalla uusi muut-
System:
\[
\begin{align*}
\sigma_1''(x) + \frac{k_1}{2\xi} \sigma_1''(x) &= 0, & 0 \leq x \leq L \\
\sigma_2''(x) + \frac{k_2}{2\xi} \sigma_2''(x) &= 0, & L \leq x \leq 2L \\
\sigma_3''(x) + \frac{k_3}{2\xi} \sigma_3''(x) &= 0, & 2L \leq x \leq 3L \\
\end{align*}
\]

Differential equation:
\[
(\frac{k_1}{2\xi})^2 \sigma_1''(x) = 0, \quad (\frac{k_2}{2\xi})^2 \sigma_2''(x) = 0, \quad (\frac{k_3}{2\xi})^2 \sigma_3''(x) = 0
\]

Lagerman h. laivalöytöllä:
\[
k = \frac{L}{2}
\]

Onsele 1:
\[
(1) - A_1 - 4 \quad (2) - A_2 - 4 \quad (3) - A_3 - 4
\]

\[
\begin{align*}
A_1 &= \frac{1}{2} A, \quad A = \frac{k_1}{2\xi} h^2 \\
A_2 &= \frac{4}{3} A \\
A_3 &= \frac{2}{3} A
\end{align*}
\]

\[
RE: \quad v_0''(0) = v_0''(L) = 0 \quad \Rightarrow \quad v_0 = 0 = v_0''
\]

\[
\begin{align*}
\sigma_1''(x) &+ (A_2 - 4) \sigma_2''(x) + (A_3 - 4) \sigma_3''(x) + v_2'' = 0 \\
&\Rightarrow (5 - 3) \sigma_1''(x) + (\frac{4}{3} A - 4) \sigma_2''(x) + v_2'' = 0
\end{align*}
\]

\[
\begin{align*}
v_2'' + (\frac{4}{3} A - 4) \sigma_2'' + (1 - 4) \sigma_3'' &= 0 \\
&\Rightarrow (5 - 3) \sigma_1'' + (\frac{4}{3} A - 4) \sigma_2'' + v_2'' = 0
\end{align*}
\]

\[
\begin{align*}
v_2'' &= -\frac{1}{5} (4v_1 + 2v_2 - v_3) \\
v_2'' &= -\frac{1}{5} (v_1 - 2v_2 + 6v_3)
\end{align*}
\]

\[
\begin{align*}
v_2'' + (\frac{4}{3} A - 4) \sigma_2'' + (1 - 4) \sigma_3'' + v_2'' &= 0 \\
&\Rightarrow (5 - 3) \sigma_1'' + (\frac{4}{3} A - 4) \sigma_2'' + v_2'' = 0
\end{align*}
\]

\[
\begin{align*}
v_2'' &= -\frac{1}{5} (4v_1 + 2v_2 - v_3) \\
v_2'' &= -\frac{1}{5} (v_1 - 2v_2 + 6v_3)
\end{align*}
\]

\[
\begin{align*}
v_2'' &= (-\frac{16}{5} + \frac{16}{5} A)(v_1 + v_2) + (\frac{32}{15} A - \frac{22}{5}) v_3
\end{align*}
\]
\[\nu_2 - j \nu_{2+} \text{ vääretaan rakennu}
\]
\(t \)aipumien \(\nu_1 \) avulla ohjelma
\(t \)aipumien ohjelma avulla (ja edelliset)

\[Q_1 + jP \nu_1''(L) - Q_2 = 0 \]
\[\Rightarrow -EI_1 \nu_1''''(L) + jP \nu_1''(L) = -EI_2 \nu_2'''(L) \]
\[\Rightarrow 2 \nu_1''''(L) - 3k^2 \nu_1''(L) = 3 \nu_2''''(L) \]
\[\Rightarrow 2 (-\nu_0 + \nu_1 - 2 \nu_2 + \nu_{z+}) - 3 \frac{1}{E} (-\nu_1 + \nu_{z+}) = 3 (-\nu_2 - \nu_{z-} - 2 \nu_3 + \nu_4) \]
\[\Rightarrow 3 \nu_{z-} + 2 \nu_{z+} = (\frac{k^2}{E} \nu_1 + (\frac{1}{E} - \frac{k^2}{5} \nu_3 + (\frac{1}{5} \nu_3 + \frac{1}{5} \nu_4) \nu_2 + 2 \nu_4 \]
\[\Rightarrow \nu_{z+} = (- \nu_1 + \frac{5}{6} \nu_3 + (7 - \frac{5}{2} \nu_3 \nu_2 + (-\nu_1 + \frac{1}{3} \nu_4) \nu_2 + 2 \nu_4 \]

\(\nu_{z+} \) sanotaan yhtälöstään (2')

\[(A - \nu_1) \nu_1 + (\nu_2 - 10 \nu_3) \nu_2 + (4 \nu_3 - \nu_4) \nu_3 + 7 \nu_4 = 0 \]
(2)

Ja neliön yhtälöstään (1')

\[(\frac{k^2}{E} \nu_1 + (\frac{1}{E} \nu_3 - \frac{1}{2} \nu_4) \nu_2 + \frac{6}{5} \nu_4 = 0 \]
(1)

Piste 3:
\[\frac{1}{2} (4 \nu_1 + 2 \nu_2 - \nu_3) + (\frac{1}{2} \nu_2 - \nu_3 + (\frac{1}{2} \nu_2 - \nu_3 + \nu_3 = 0 \]

Lasuitetaan \(\nu_{z-} \) ja \(\nu_{z+} \) taipumien \(\nu_1 \) avulla, ottaen huomioon yhteenopinusselostot \(\nu''_2(2L) = \nu''_1(2L) \) ja \(EI_2 \nu_2'''(2L) = EI_1 \nu_1''''(2L) \)

\[\begin{bmatrix} 3 \nu_2 - 2 \nu_3 + \nu_{z+} \\ 3(\nu_3 - 2 \nu_4 + \nu_{z+}) - 2(\nu_3 - 2 \nu_4 + \nu_{z+}) \end{bmatrix} \begin{bmatrix} - \nu_3 + \nu_{z+} \\ \nu_{z+} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} \nu_{z-} \\ \nu_{z+} \end{bmatrix} \Rightarrow \begin{bmatrix} \nu_{z-} \\ \nu_{z+} \end{bmatrix} = \begin{bmatrix} j & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} \nu_{z+} + \nu_{z+} \\ \nu_3 + \nu_3 + 2 \nu_4 + 2 \nu_4 \end{bmatrix} \Rightarrow \begin{bmatrix} \nu_{z-} \\ \nu_{z+} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (6 \nu_3 - 2 \nu_4 + \nu_3) \\ (\frac{2}{5} - \frac{5}{2} \nu_3 + (\frac{1}{5} \nu_3 - \frac{1}{5} \nu_4) \nu_2 + \frac{2}{5} \nu_4 = 0 \]
(3)

\[\frac{2}{3} \nu_3 + (\frac{1}{5} - \frac{1}{5} \nu_3 + (\frac{2}{5} - \frac{5}{2} \nu_3) \nu_2 + (\frac{1}{5} \nu_3 - \frac{1}{5} \nu_4) \nu_2 + \frac{1}{5} \nu_4 = 0 \]
(3)

Rak. Stab.

\[\text{Piste 4: (osalle 2)} \quad v_2 + \left(\frac{5}{3} - 2 \right) v_5 + \left(-\frac{5}{3} \right) v_7 + \left(\frac{2}{3} - 2 \right) v_9 + \left(\frac{2}{3} - 2 \right) v_9 = 0 \]

\[\text{Piste 4: (osalle 3)} \quad v_7 + \left(\frac{1}{2} - 2 \right) v_5 + \left(-\frac{1}{2} \right) v_9 + \left(\frac{1}{2} - 2 \right) v_9 + \left(\frac{1}{2} - 2 \right) v_9 + \left(\frac{1}{2} - 2 \right) v_9 = 0 \]

\[\Rightarrow \quad v_{\text{77}} = \left(\frac{24}{5} - \frac{2}{5} \right) v_7 + \left(\frac{16}{5} - \frac{5}{5} \right) v_7 + \left(\frac{12}{5} - \frac{5}{5} \right) v_7 \]

\[v_{\text{99}} \text{ toisella kauneilla toisimpana} \]

\[v_5 \text{ avulla tasapainon oikean kuven mukaisesti} \]

\[Q_2 - P \text{01 (2L)} - Q_3 = 0 \]

\[\Rightarrow \quad -EI_2 V_2''(2L) - P V_2''(2L) = -EI_3 V_3''(2L) \]

\[\Rightarrow \quad 3 \left(-v_2 + 2 v_5 - 2 v_9 + v_{\text{99}} \right) + 2 \left(v_7 + v_{\text{77}} \right) = 2 \left(v_5 - 2 v_9 - 2 v_7 \right) \]

\[\Rightarrow \quad v_{\text{99}} = v_5 + \left(\frac{24}{5} - 2 \right) v_7 + \left(\frac{16}{5} - \frac{5}{5} \right) v_7 + \left(\frac{12}{5} - \frac{5}{5} \right) v_7 \]

\[\Rightarrow \quad \text{differentiaaliyhtälö pisteessä 4:} \]

\[2 v_5 + \left(\frac{5}{3} - \frac{22}{5} \right) v_7 + \left(\frac{16}{15} - \frac{14}{15} \right) v_9 + \left(2 A - \frac{8 \beta}{15} \right) v_5 = 0 \quad (4) \]

\[\text{Piste 5:} \quad v_5 + \left(\frac{5}{3} - 2 \right) v_7 + \left(-\frac{1}{3} \right) v_9 - v_5 = 0 \]

\[\Rightarrow \quad \frac{2}{5} v_5 + \left(\frac{5}{3} - \frac{22}{5} \right) v_7 + \left(\frac{12}{5} - \frac{5}{5} \right) v_7 = 0 \quad (5) \]

Kootaan myös yhtälöön (4) ... (5) matriseismon

\[
\begin{bmatrix}
\frac{24}{5} - A & \frac{12}{5} - \frac{22}{5} & \frac{6}{5} \\
-\frac{5}{3} & -\frac{5}{3} & 4 \frac{1}{2} - \frac{5}{5} \\
4 \frac{1}{2} & 4 \frac{1}{2} - \frac{5}{5} & 0 \\
0 & \frac{5}{5} & 0 \\
0 & 0 & \frac{6}{5} \\
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5 \\
\end{bmatrix} = 0
\]
lyhyesti merkitynä \(K\hat{\Sigma} = \hat{\Sigma} \), kerätäksesi kuormaparametrit

den saadaan ehdosta etk \(K = 0 \), joka johtaa
gleisuksyn ominaisarvoprosleemman

\[
K_1 \hat{\Sigma} = \lambda_1 K_2 \hat{\Sigma}
\]

jonka alin ominaisarvo \(\lambda_{\text{min}} \) on muututtua liuormaan.

\[
N_1 = \begin{bmatrix}
26/5 & -22/5 & 61/5 & 0 & 0 \\
-44/5 & 73/5 & -54/5 & 3 & 0 \\
41/5 & -10/5 & 28/5 & -18/5 & 4/5 \\
0 & 2 & -30/5 & 14/6/15 & -88/15 \\
0 & 0 & 61/5 & -22/5 & 26/5 \\
\end{bmatrix}
\]

\[
K_1 = \begin{bmatrix}
1 & -1/2 & 0 & 0 & 0 \\
-1 & 5 & -4 & 0 & 0 \\
0 & -4/3 & 8/3 & -4/3 & 0 \\
0 & 0 & -8/3 & 14/3 & -2 \\
0 & 0 & 0 & -3/2 & 3 \\
\end{bmatrix}
\]

Ratkaisuun ominaisarvointevä pienentää ohjelempehtikse
(sivu 7), joka kenttä NAG aliohjelmanvastusten muodossa
FÖ2BJF, joka ratkaisee yleisyyden ominaisarvointevä
reaaliselle matriseille \(K_1 \) ja \(K_2 \).

alin ominaisarvo \(\lambda_{\text{min}} = 0.309361 \Rightarrow \mu_{\text{cr}} > 12374 \frac{E_I}{L^2} \)

purjehdusmuoto l.
ominaisarvo \(\lambda_{\text{min}} \)
vas terva
ominaisvektorit:

\[
\vec{v} = \begin{bmatrix}
0.262 \\
0.462 \\
0.526 \\
0.535 \\
0.739 \\
\end{bmatrix}
\]
Differentialmenetelmä voidaan soveltaa muotoon, että
jäätävän ja huumoivien poltain
kentäiset kolmikkojaiset on tehty joksiini tehtävään tai
puristavan voiman epäjäätävyytin. Koko poltain lähtöa
yhtälöineen \(\sigma + w_k = 0 \), jossa \(w_k \) on arvo
epäjäätävän kolmikkojen lähtökäsitteen
voiman (leim). Hilpisket voidaan myös välistää
että ne eivät ole ka. epäjäätävän kolmikkojen.
Oheiseen pitkien liestelmien 1. theeä muistuttavat
tavat poltain järkevimmillä
(= vahenemmin työte).
\[K_1 = \begin{bmatrix} 5 & -1 & 1 & 0 & 0 \\ -1 & 6 & -1 & 1 & 0 \\ 1 & -1 & 6 & -1 & 1 \\ 0 & 0 & 1 & 6 & -1 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix} \]

\[K_2 = \begin{bmatrix} 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & -\frac{11}{12} & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{8}{3} & -\frac{4}{12} & 0 \\ 0 & 0 & -\frac{13}{12} & \frac{17}{16} & -\frac{17}{12} \\ 0 & 0 & 0 & -\frac{3}{2} & 3 \end{bmatrix} \]

Alain ominaisarvo on \(\lambda_{cr} = 0,220265 \) \(\Rightarrow P_{cr} = 0,8811 \frac{EI}{L^2} \)

Ominaisvektori:
\[\bar{\lambda} = \begin{bmatrix} 0,227 \\ 0,490 \\ 0,578 \\ 0,570 \\ 0,290 \end{bmatrix} \]

Elementtimementöillä, käytet aggression palkalle 30 Timoshenkon palkkielementtien, saadun \(P_{cr} = 1,232 \frac{EI}{L^2} \) Tuloksena pität olko rikkoi elementtimomentin johdun mellea terhele.