An anisotropic continuum damage model for concrete

Saba Tahaei Yaghoubi1, Juha Hartikainen1, Kari Kolari2, Reijo Kouhia3

1Aalto University, Department of Civil and Structural Engineering
2VTT
3Tampere University of Technology, Department of Mechanical Engineering and Industrial Systems

4 June 2015
Outline

1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
Introduction

- The non-linear behaviour of quasi-brittle materials under loading is mainly due to damage and micro-cracking rather than plastic deformation.
- Damage of such materials can be modelled using scalar, vector or higher order damage tensors.
- Failure of rock-like materials in tension is mainly due to the growth of the most critical micro-crack.
- Failure of rock-like materials in compression can be seen as a cooperative action of a distributed microcrack array.

http://mps-il.com
1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
Ottosen’s 4 parameter model

\[A \frac{J_2}{\sigma_c} + \Lambda \sqrt{J_2} + BI_1 - \sigma_c = 0, \]

\[\Lambda = \begin{cases} k_1 \cos\left[\frac{1}{3} \arccos(k_2 \cos 3\theta) \right] & \text{if } \cos 3\theta \geq 0 \\ k_1 \cos\left[\frac{1}{3} \pi - \frac{1}{3} \arccos(-k_2 \cos 3\theta) \right] & \text{if } \cos 3\theta \leq 0 \end{cases}. \]

\[\cos 3\theta = \frac{3\sqrt{3}}{2} \frac{J_3}{J_2^{3/2}}, : \text{ Lode angle} \]

\(\sigma_c \): the uniaxial compressive strength
\(I_1 = \text{tr} \sigma \): the first invariant of the stress tensor
\(J_2 = \frac{1}{2} s : s, J_3 = \det s = \frac{1}{3} \text{tr} s^3 \): deviatoric invariants
\(A, B, k_1, k_2 \): material constants
Meridian plane & plane stress

Green line = Mohr-Coulomb with tension cut-off
Blue line = Ottosen’s model
Red line = Barcelona model
Deviatoric plane

π – plane

$\sigma_m = -f_c$

Green line = Mohr-Coulomb with tension cut-off
Blue line = Ottosen’s model
Red line = Barcelona model
1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
Thermodynamic formulation

Two potential functions

\[\psi^c = \psi^c(S) \quad S = (\sigma, D, \kappa) \]

Specific Gibbs free energy

\[\gamma = \rho_0 \dot{\psi}^c - \dot{\sigma} : \epsilon. \quad \gamma \geq 0. \]

Clausius-Duhem inequality

\[\varphi(W; S) \quad W = (Y, K) \]

Dissipation potential

\[\gamma \equiv B_Y : Y + B_K K \]

Define \[Y = \rho_0 \frac{\partial \psi^c}{\partial D} \quad K = -\rho_0 \frac{\partial \psi^c}{\partial \kappa}, \]

\[\left(\rho_0 \frac{\partial \psi^c}{\partial \sigma} - \epsilon \right) : \dot{\sigma} + \left(\dot{D} - B_Y \right) : Y + (-\dot{\kappa} - B_K) K = 0. \]

\[\epsilon = \rho_0 \frac{\partial \psi^c}{\partial \sigma}, \quad \dot{D} = B_Y, \quad \dot{\kappa} = -B_K, \]
1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
Specific model

Specific Gibbs free energy

\[
\rho_0 \psi^c(\sigma, D, \kappa) = \frac{1 + \nu}{2E} \left[\text{tr} \sigma^2 + \text{tr}(\sigma^2 D) \right] - \frac{\nu}{2E} \left(1 + \frac{1}{3} \text{tr} D \right) (\text{tr} \sigma)^2 + \psi^c,\kappa(\kappa)
\]

Elastic domain

\[
\Sigma = \{ (Y, K) | f(Y, K; \sigma) \leq 0 \}
\]

where the damage surface is defined as

\[
f(Y, K; \sigma) = \frac{A\tilde{J}_2}{\sigma_{c0}} + \Lambda \sqrt{\tilde{J}_2} + BI_1 - (\sigma_{c0} + K) = 0,
\]
Invariants in terms of Y

\[
\tilde{J}_2 = \frac{1}{1 + \nu} \left[E \text{tr} Y - \frac{1}{6} (1 - 2\nu)(\text{tr}\sigma)^2 \right]
\]

\[
\tilde{J}_3 = \frac{2}{3(1 + \nu)} \left\{ E [\text{tr}(\sigma Y) - \text{tr}\sigma \text{tr} Y] + \frac{1}{9} (1 - 2\nu)(\text{tr}\sigma)^3 \right\}
\]

\[
\varphi(Y, K; \sigma) = I_\Sigma(Y, K; \sigma)
\]

where I_Σ is the indicator function

\[
I_\Sigma(Y, K; \sigma) = \begin{cases}
0 & \text{if } (Y, K) \in \Sigma \\
+\infty & \text{if } (Y, K) \notin \Sigma
\end{cases}
\]

\[
(B_Y, B_K) = \begin{cases}
(0, 0), & \text{if } f(Y, K_\alpha; \sigma) < 0, \\
(\dot{\lambda} \frac{\partial f}{\partial Y}, \dot{\lambda} \frac{\partial f}{\partial K}), & \dot{\lambda} \geq 0, \text{ if } f(Y, K_\alpha; \sigma) = 0,
\end{cases}
\]

\[
\dot{D} = \dot{\lambda} \frac{\partial f}{\partial Y}, \quad \dot{\kappa} = -\dot{\lambda} \frac{\partial f}{\partial K}
\]
1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
Some results

Uniaxial compression - ultimate compressive strength $\sigma_c = 32.8$ MPa

$\sigma_{c0} = 18$ MPa, $\sigma_{t0} = 1$ MPa, $(I_1, \sqrt{J_2}) = (-5\sqrt{3}\sigma_{c0}, 4\sigma_{c0}/\sqrt{2})$

$A = 2.694, B = 5.597, k_1 = 19.083, k_2 = 0.998$

$$K = \frac{a_1(\kappa/\kappa_{\max}) + a_2(\kappa/\kappa_{\max})^2}{[1 + b(\kappa/\kappa_{\max})^2]}$$

$a_1 = 85.3$ MPa, $a_2 = -12.65$ MPa, $b = 0.7032$

Experimental results from Kupfer et al. 1969.
Figure 5: (a) The predicted reduction of the Young's modulus E and apparent Poisson's ratio ν_{app} under uniaxial compression. (b) Predicted damage-strain curves of the constitutive model compared to experimental results.

Figure 6: (a) Comparison between the predicted stress-strain curves for a concrete specimen and the experimental data. (b) Predicted damage-strain curves of the constitutive model compared to experimental data.

Young's modulus and apparent Poisson's ratio

![Graph showing Young's modulus and apparent Poisson's ratio.]

Biaxial compression

![Graph showing biaxial compression behavior.]

References

1. Introduction
2. Ottosen's model
3. Thermodynamic
4. Specific model
5. Results
6. Conclusions
1 Introduction

2 Ottosen’s 4 parameter model

3 Thermodynamic formulation

4 Specific model

5 Some results

6 Conclusions and future work
Conclusions and future work

- Continuum damage formulation of the Ottosen’s 4 parameter model
- Can model axial splitting
- Implementation into FE software (own codes, ABAQUS)
- Development of directional hardening model
- Regularization by higher order gradients

Thank you for your attention!