A continuum damage model for creep fracture and fatigue analysis

Petteri Kauppila1, Reijo Kouhia2, Juha Ojanperä1, Timo Saksala2, Timo Sorjonen1

1Valmet Technologies Oy, P.O. Box 109, FI-33101 Tampere, Finland
2Tampere University of Technology
Department of Mechanical Engineering and Industrial Systems, P.O. Box 589, FI-33101 Tampere, Finland

21st European Conference on Fracture, June 20-24, 2016
1 Introduction

2 Thermodynamic formulation

3 Specific models

4 Monkman-Grant parameter

5 T24 material parameters

6 FE analysis and results

7 Concluding remarks
Introduction

- Sustainable energy system is a combination of wide variety of energy resources.
- Result in flexible power generation.
- New requirements for boiler creep fatigue design due to intermittent power demand.
1 Introduction

2 Thermodynamic formulation

3 Specific models

4 Monkman-Grant parameter

5 T24 material parameters

6 FE analysis and results

7 Concluding remarks
Thermodynamic formulation

Developed models are completely defined by two potential functions: the specific Helmholtz free energy \(\psi = \psi(T, \epsilon_{te}, \omega) \), (linear kinematics assumed \(\epsilon = \epsilon_e + \epsilon_c + \epsilon_{th}, \epsilon_{te} = \epsilon - \epsilon_c, \omega = 1 - D \)) and the complementary dissipation potential \(\varphi(Y, q, \sigma; T, \omega) \) defined as

\[
\gamma = \frac{\partial \varphi}{\partial q} \cdot q + \frac{\partial \varphi}{\partial \sigma} : \sigma + \frac{\partial \varphi}{\partial Y} Y.
\]

Together with the Clausius-Duhem inequality

\[
\gamma = -\rho(\dot{\psi} + s\dot{T}) + \sigma: \dot{\epsilon} - T^{-1} \text{grad} T \cdot q \geq 0
\]

results the constitutive equations

\[
-\rho \left(s + \frac{\partial \psi}{\partial T} \right) \dot{T} + \left(\sigma - \rho \frac{\partial \psi}{\partial \epsilon_{te}} \right) : \dot{\epsilon}_{te} + \left(\dot{\epsilon}_c - \frac{\partial \varphi}{\partial \sigma} \right) : \sigma
\]

\[
- \left(\dot{\omega} + \frac{\partial \varphi}{\partial Y} \right) Y - \left(\frac{\text{grad} T}{T} + \frac{\partial \varphi}{\partial q} \right) \cdot q = 0.
\]
1 Introduction

2 Thermodynamic formulation

3 Specific models

4 Monkman-Grant parameter

5 T24 material parameters

6 FE analysis and results

7 Concluding remarks
Specific models

The specific Helmholtz free energy

\[\rho \psi = \rho c_e \left(T - T \ln \frac{T}{T_r} \right) + \frac{1}{2} (\varepsilon_{te} - \varepsilon_{th}) : \omega C_e : (\varepsilon_{te} - \varepsilon_{th}), \]

\(\varepsilon_{th} = \alpha (T - T_r) \), thermal strain, \(C_e \) elasticity tensor, \(\alpha \) thermal expansion coefficients, \(T_r \) stress free reference temperature.

The complementary dissipation potential

\[\varphi(Y, q, \sigma; T, \omega) = \varphi_{th}(q; T) + \varphi_d(Y; T, \omega) + \varphi_c(\sigma; T, \omega), \]

where the thermal part is

\[\varphi_{th}(q; T) = \frac{1}{2} T^{-1} q \cdot \lambda^{-1} q. \]

For creep the following Norton type potential function is adopted

\[\varphi_c(\sigma; T, \omega) = \frac{h_c(T)}{p + 1} \frac{\omega \sigma_{rc}}{t_c} \left(\frac{\bar{\sigma}}{\omega \sigma_{rc}} \right)^{p+1}, \]

\(\bar{\sigma} = \sqrt{3J_2}, h_c(T) = \exp(-Q_c/RT) \).
Damage potential

Kachanov-Rabotnov type

\[\varphi_d(Y; T, \omega) = \frac{h_d(T)}{r + 1} \frac{Y_r}{t_d \omega^k} \left(\frac{Y}{Y_r} \right)^{r+1}, \quad \text{model 1} \]

\[\varphi_d(Y; T, \omega) = \frac{h_c(T)}{(1/2p + 1)(1 + k + p)} \frac{Y_r}{t_d \omega^k} \left(\frac{Y}{Y_r} \right)^{1/2p+1}, \quad \text{model 2} \]

\(t_d \) is a characteristic time for damage evolution,
\(h_d(T) = \exp\left(-\frac{Q_d}{RT}\right) \), where \(Q_d \) is the damage activation energy and \(R \) is the universal gas constant. The reference value \(Y_r = \sigma_{rd}^2 / (2E) \), where \(\sigma_{rd} \) is a reference stress for the damage process.
1 Introduction

2 Thermodynamic formulation

3 Specific models

4 Monkman-Grant parameter

5 T24 material parameters

6 FE analysis and results

7 Concluding remarks
Monkman-Grant parameter

Experimental relationship

\[C_{MG} = (\dot{\varepsilon}_c^{\min})^m t_{rup} \approx \text{constant}. \]

For the two models the Monkman-Grant parameter have the values \((m = 1)\)

\[C_{MG} = \dot{\varepsilon}_c^{\min} t_{rup} = \frac{1}{1 + k + 2r} \frac{t_d h_c}{t_c h_d} \left(\frac{\sigma}{\sigma_r} \right)^{p-2r} \quad \text{model 1} \]

\[C_{MG} = \frac{t_d}{t_c} \quad \text{model 2}. \]

Model 2 can be obtained by imposing the following constrains to the model 1:

\[p = 2r, \quad \frac{1}{1 + k + 2r} \frac{t_d h_c}{t_c h_d} = \text{constant}. \]
1 Introduction
2 Thermodynamic formulation
3 Specific models
4 Monkman-Grant parameter
5 T24 material parameters
6 FE analysis and results
7 Concluding remarks
T24 material parameters

The calibrated model parameters for the 7CrMoVTiB10-10 steel (T24), $q_c = Q_c / R$ and $q_d = Q_d / R$, $p(T) = p_r (1 + a(T - T_r) / T_r)$ and $r(T) = r_r (1 + b(T - T_r) / T_r)$, $\sigma_{rc} = \sigma_{rd} = sigr = \sigma_y(0(T)) = \sigma^* - cT$, with $\sigma^* = 1123$ MPa, $c = -1$ MPa/K.

<table>
<thead>
<tr>
<th>mod</th>
<th>t_c [s]</th>
<th>p_r</th>
<th>t_d [s]</th>
<th>a</th>
<th>q_c [K]</th>
<th>r_r</th>
<th>q_d [K]</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3039.9</td>
<td>14.77</td>
<td>37.768</td>
<td>-4.804</td>
<td>7137.6</td>
<td>7.545</td>
<td>9350.1</td>
<td>-5.201</td>
</tr>
<tr>
<td>2</td>
<td>3414.1</td>
<td>14.59</td>
<td>41.26</td>
<td>-4.891</td>
<td>7137.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Minimum creep strain-rate (lhs) and the creep strengths (rhs).
Solid lines = model 1, dashed lines = model 2. Top 500° C, middle 550° C bottom 600° C.
Monkman-Grant parameter
1 Introduction

2 Thermodynamic formulation

3 Specific models

4 Monkman-Grant parameter

5 T24 material parameters

6 FE analysis and results

7 Concluding remarks
FE analysis and results

The models are implemented in ANSYS using the USERMAT subroutine and the mesh consists of mainly 20 node hexahedral ANSYS SOLID186 elements & some 10 node tetrahedral SOLID187 elements. Prescribed displacement history at the end of the tube nozzle.

The computed lifetime is roughly 150 cycles. Ramp time 1 hour and hold time 200 hours. Internal pressure 14 MPa.
Results

Damage distribution near the most critical location of the header. The accumulated damage and the equivalent creep strain at the most critical location as functions of the prescribed displacement.

![Damage distribution](image)

From a practical point of view, both developed models yield relatively equal results within the temperature range 500–600 °C. However, the model 2 is accurate only in relatively high creep temperatures and it becomes slightly inaccurate as the temperature lowers, which is a result of the assumed Monkman-Grant relationship. The model 1 is more accurate also in low creep temperatures mainly because of its greater flexibility due to a higher number of calibration parameters.

Acknowledgements. This work was carried out in the research program Flexible Energy Systems (FLEXe) and supported by Tekes and the Finnish Funding Agency for Innovation. The aim of FLEXe is to create novel technological and business concepts enhancing the radical transition from the current energy systems towards sustainable systems. FLEXe consortium consists of 17 industrial partners and 10 research organisations. The programme is coordinated by CLIC Innovation Ltd. www.clicinnovation.fi

References

1 Introduction

2 Thermodynamic formulation

3 Specific models

4 Monkman-Grant parameter

5 T24 material parameters

6 FE analysis and results

7 Concluding remarks
Concluding remarks

- Thermodynamically consistent model for high-temperature creep fatigue analyses has been developed.
- A specific model with Norton-Bailey type creep and Kachanov-Rabotnov type damage models are used.
- Two version of the damage evolution equations. One-version satisfies the Monkman-Grant hypothesis exactly.
- Materials parameters for the 7CrMoVTiB10-10 steel (T24) have been estimated in the temperature range 500-600 °C.
- Developed models have been implemented in the ANSYS FE-software by using the USERMAT subroutine.

Acknowledgements
This work was carried out in the research program Flexible Energy Systems (FLEXe) and supported by Tekes and the Finnish Funding Agency for Innovation. The programme is coordinated by CLIC Innovation Ltd.

www.clicinnovation.fi
Thank You for Your Attention!

Etna the Living Mountain
Oil painting on canvas by Gilda Gubiotti 2008.