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Motivation
Classical fatigue models can be considered as static
criteria for alternating stress state and infinite life.
For finite life predictions these criterion are augmented by
damage accumulation rules based on cycles.

Problems:

Complex load histories - cycle counting methods based on
well-defined cycles.

The effect of loading sequence is not taken into account.

Evolution equation based fatigue models the endurance
limit is described with a moving endurance surface.

The state variables in the endurance surface as well as
damage are described using evolution equations.

Arbitrary loading histories can be treated in a unified
manner.
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Endurance surface
Basic idea

The endurance surface is defined in stress space as

β(σ,α; parameters) = 0,

and the evolution of α and damage D is defined as rate-equations

α̇ = A(σ,α)β̇, Ḋ = g(β,D)β̇.
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Isotropic HCF-model

Proposal by Ottosen, Stenström and Ristinmaa, 2008,

β =
1

S0

(σ̄ +AI1 − S0) = 0, β ≥ 0 and β̇ > 0,

σ̄ =
√

3J2(s −α) =
√

3
2 (s −α):(s −α), I1 = trσ,

α̇ = C(s −α)β̇, Ḋ = K exp(Lβ)β̇.
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Figure 1: Endurance surface presented in a meridian plane as the backstress is (a) α = 0 and (b) α 6= 0 .
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Figure 2: Pulsating uniaxial stress state. The endurance surface moves periodically between the
states A and B. The initial and final state are highlighted by the dashed and solid line, respectively.

1

Figure 1: Endurance surface presented in a meridian plane as the backstress is (a) α = 0 and
(b) α 6= 0 .

Shape of the endurance surface in the deviatoric plane is circular and the
meridian lines are straight as with the case of the Drucker-Prager model in
plasticity, cf. Fig. 1. The center point in the deviatoric plane is defined by the
α-tensor, which memorizes the load history and results in the movement of the
endurance surface in the stress space.

For the evolution of the deviatoric back-stress tensor α, a hardening rule
similar to Ziegler’s kinematic hardening rule in plasticity theory is adopted, i.e.

α̇ = C(s −α)β̇, (3)

where C is a non-dimensional material parameter, and the dot denotes the time
rate.

Despite damage resulting principally from the initiation, nucleation, and
growth of voids and micro-cracks generate anisotropic behavior, material dam-
age is formulated from a macroscopic viewpoint by using an isotropic measure
D ∈ [0, 1], for which the evolution is governed by the equation of the form

Ḋ = g(β,D)β̇, g(β ≥ 0, D) ≥ 0. (4)

The specific form of the function g will be discussed subsequently. Since
g ≥ 0 and damage never decreases, it then follows that for damage evolution
β̇ ≥ 0. A glance at (3) also reveals that the evolution of the back-stress takes
place only if the conditions

β ≥ 0 and β̇ > 0 (5)

are satisfied.
In contrast to plasticity, the stress state can lie outside the endurance surface.

When the stress state is outside the endurance surface and moves away from
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Transversely isotropic HCF-model

Certain materials exhibit transversely isotropic symmetry as
unidirectional composites or forged metals.

Shape of the endurance surface can depend of the invariants

I1 = trσ, I2 = 1
2
trσ2, I3 = 1

3
trσ3, I4 = tr (σB), I5 = tr (σ2B),

where B is the structural tensor B = b ⊗ b and b is the unit vector
normal to the transverse isotropy plane.

The key idea in the transversely isotropic model is to split the stress as

σ = σL + σT , where

σT = PσP = σ − σB −Bσ + σbB ,

and P = I −B is the projection tensor, σb = I4 = b · σ · b.
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Transversely isotropic endurance surface

Endurance surface for transversely isotropic HC-fatigue model

β = {σ̄ +A
L
I
L1

+A
T
I
T1
− [(1− ζ)S

T
+ ζS

L
]} /S

T
= 0,

where

σ̄ =
√

3J2(s −α), IL1 = trσL = I4, IT1 = trσT = I1−I4,

and

ζ =
(σL : σL

σ : σ

)n
=

(
2I5 − I24

2I2

)n

.

In uniaxial loading σ = σn ⊗ n the ζ-factor has the form

ζ = (2 cos2 ψ − cos4 ψ)n,

where ψ is the angle between n and b.
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Shape in the π-plane and ζ-factor
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Figure 3: Endurance surface in the π-plane: AL = 0.225, AT = 0.275, SL/ST = 1, 1.5, 2, b =
(0, 0, 1)T .
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Figure 4: Dependence of the parameter ζ on the exponent n and the angle ψ between the loading
and preferred longitudinal directions n and b, respectively.
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Damage evolution

Damage evolution equation modified to

Ḋ =
K

(1−D)k
exp(Lβ)β̇,

where the value k = 1 has been used.

Complicates sightly the parameter estimation.
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 8: (a) Fatigue strengths (σm = 0) for the forged 34CrMo6 steel employed. The markers
4 denote the data points. The solid and dashed lines implicate the model results as the loading
directions in relation to preferred longitudinal direction are 0◦ and 90◦, respectively. The data
point (107,428 MPa) for the loading direction of 45◦ is also presented. (b) Examples of damage
evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).

ence of mean stress on that relation was shown to be low. To further evaluate
the model, some Wöhler curves for varying mean stresses are depicted in Fig.
10. Despite the model calibration for zero mean stress, the model is able to
predict the observed characteristics of fatigue strength well.

An experimentally established fact is that the fatigue limit in cyclic torsion
is independent on superimposed mean torsion as the number of cycles is high
(106 or more), and the maximum shear stress does not exceed the static yield
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 9: Development of periodic movement of the endurance surface during identically
varying first few stress cycles (solid line). The endurance limit is indicated by dashed line.
The loading direction is (a) parallel with and (b) perpendicular to the preferred longitudinal
direction.
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Model calibration

The model is calibrated for two steel grades: forged 34CrMo6
and isotropic AISI-SAE 4340 steel from R = −1 tests.
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 8: (a) Fatigue strengths (σm = 0) for the forged 34CrMo6 steel employed. The markers
4 denote the data points. The solid and dashed lines implicate the model results as the loading
directions in relation to preferred longitudinal direction are 0◦ and 90◦, respectively. The data
point (107,428 MPa) for the loading direction of 45◦ is also presented. (b) Examples of damage
evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).

ence of mean stress on that relation was shown to be low. To further evaluate
the model, some Wöhler curves for varying mean stresses are depicted in Fig.
10. Despite the model calibration for zero mean stress, the model is able to
predict the observed characteristics of fatigue strength well.

An experimentally established fact is that the fatigue limit in cyclic torsion
is independent on superimposed mean torsion as the number of cycles is high
(106 or more), and the maximum shear stress does not exceed the static yield
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 9: Development of periodic movement of the endurance surface during identically
varying first few stress cycles (solid line). The endurance limit is indicated by dashed line.
The loading direction is (a) parallel with and (b) perpendicular to the preferred longitudinal
direction.
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material SL [MPa] ST [MPa] A
L

A
T

C K L

34CrMo6 447 360 0.225 0.300 33.6 12.8·10−5 4.0

AISI-SAE 4340 490 490 0.225 0.225 0.11 1.46·10−5 8.7
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Results

The model describes well the mean stress effect in cyclic tension
as well as the non-linear effect on mean shear stress on the
fatigue strength.

0.5

0.6

0.7

0.8

0.9

1.0

0 0.5 1.0 1.5 2.0
σxm/σxa

σ
x
a
(σ

x
m
)/
σ
x
a
(0
)

b

b

b

ut

ut

ut

0.5

0.6

0.7

0.8

0.9

1.0

0 0.5 1.0 1.5 2.0
σym/σya

σ
y
a
(σ

y
m
)/
σ
y
a
(0
)

b

b

b

ut

ut

(a) (b)

Figure 10: Effect of mean stress on fatigue life of 106 cycles under longitudinal (left) and transverse
(right) uniaxial cyclic tension. The x-coordinate direction is parallel with the preferred longitudinal
direction. Experimental data for EN24T steel depicted by the markers △ is taken from ?.
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(right) uniaxial cyclic tension. The x-coordinate direction is parallel with the preferred longitudinal
direction. Experimental data for EN24T steel depicted by the markers △ is taken from ?.
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Figure 11: (Left) Effect of mean shear stress on the fatigue strength as the number of cycles is
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Effect of phase- and frequency difference

σx = σxm + σxa sin(ωt) σx = σxa sin(ωxt)

σy = σxm + σxa sin(ωt− φy) τxy = 1
2
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Figure 12: (Upper) Alternating coordinate stress combinations for one cycle. (Below) Correspond-
ing principal stresses. The x-coordinate direction is parallel with the preferred longitudinal direc-
tion.
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Figure 13: (a): Influence of phase shift on the fatigue strength under two cyclic normal stresses. (b):
Influence of phase shift between a cyclic normal and a shear stress. The solid and dashed line denote the
transverse isotropic and isotropic model response, respectively. The x-coordinate direction is parallel with
the preferred longitudinal direction. Data points △ for 42CrMo4 steel are taken from ?.

6

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

10−1 100 101

ωxy/ωx

σ
x
a
(ω

x
y
/ω

x
)/
σ
x
a
(1
)

ut

ut

ut

ut

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1 2 3 4 5 6 7 8

ωy/ωx

σ
x
a
(ω

y
/ω

x
)/
σ
x
a
(1
)

bc

bc

bc

(a) (b)

Figure 14: (a): Influence of frequency difference on the fatigue strength as the stress state consists of
cyclic normal and shear stresses. The solid and dashed line refer to the transverse isotropic and isotropic
model response, respectively. (b): Influence of frequency difference between two cyclic normal stresses.
The markers △ and ◦ denote the data points for 25CrMo4 and 34CrNiMo6 steel taken from ? and ?,
respectively. The x-coordinate direction is parallel with the preferred longitudinal direction.

8

data for isotropic AISI SAE 4340 (dashed line), 34CrMo6 (solid line)
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Test case - Inclusion problem

The model is implemented in Abaqus FE program using the UMAT
subroutine.

Al2O3 inclusion in a steel plate in plane strain.

x

y
σy = S0 sin(ωt)

moodi II

moodi I

lovikulma 2(π − α)

λ

π3π/4π/2π/40

0

-0.1

-0.2

-0.3

-0.4

-0.5

1

Al2O3 inclusion:

E = 375 GPa, ν = 0.22,

AISI-SAE 4340 steel:

E = 210 GPa, ν = 0.3

S0 = 490 MPa, A = 0.225, C = 0.11

K = 1.46 · 10−5, L = 8.7
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Influence of damage to the behaviour

Damage fields after the cycle 5500 and 8300. Effect of damage taken

into account in the constitutive model
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1

Figure 1: Damage field in the base material after cycle 1 (lhs) and 500 (rhs).
Notice the difference in scale, the upper color bar refers to the first cycle and
the lower one to the cycle 500.

1

Fatigue life ≈ 8300 cycles.

Computational modelling of HCF – Holopainen et al. 23.10.2015 19/22



1 Motivation

2 Endurance surface

3 Model calibration

4 Results

5 Test case

6 Conclusions

1 Motivation

2 Endurance surface

3 Model calibration

4 Results

5 Test case - Inclusion problem

6 Conclusions and future developments

Computational modelling of HCF – Holopainen et al. 23.10.2015 20/22



1 Motivation

2 Endurance surface

3 Model calibration

4 Results

5 Test case

6 Conclusions

Conclusions and future developments

An evolution equation based multiaxial transversely isotropic HCF
model is developed.

It can be used for arbitrary loading histories.

The model is implemented in the Abaqus FE-software using the
UMAT subroutine.

evolution equation for ansiotropic damage,

verification of evolution equations from micromechanics, and

extension to LCF and high-temperature creep fatigue are under
development.
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Thank you for your attention!

Amy Winehouse

Acrylic painting by Kelli Gedvil 2013.
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