Problem 1

Let's investigate the numerical solution of the Maxwell-type creep problem

$$
\begin{equation*}
\sigma=E\left(\epsilon-\epsilon_{\mathrm{c}}\right) . \tag{1}
\end{equation*}
$$

The creep strain rate $\dot{\epsilon}_{\mathrm{c}}$ is obtained from

$$
\begin{equation*}
\dot{\epsilon}_{c}=\tau_{\mathrm{pr}}^{-1}\left(\frac{\sigma}{\sigma_{\mathrm{r}}}\right), \tag{2}
\end{equation*}
$$

where τ_{pr} is the "pseudo"relaxation time (constant) and σ_{r} is a reference stress (constant). The ralaxation time is $\tau=\tau_{\mathrm{pr}} \epsilon_{\mathrm{r}}$, where $\epsilon_{\mathrm{r}}=\sigma_{r} / E$.

Formulate the problem as a first order ordinary differential equation for the stress and solve it numerically using the implicit Euler method. The loading is a constant strain rate: $\epsilon(t)=\tau^{-1} \epsilon_{\mathrm{r}} t$. Integrate to the final time $t=4 \tau$ by using a time step $\Delta t=2 \tau$. Hint: Formulate the equation (1) is a dimensionless form using a dimensionless stress $y=\sigma / \sigma_{\mathrm{r}}$. When you differentiate the equation (1) w.r.t. time, you can assume the Young's modulus E to be a constant.

Solution

Taking the time derivative of the constitutive equation (1) gives

$$
\begin{equation*}
\dot{\sigma}=E\left(\dot{\epsilon}-\dot{\epsilon}_{\mathrm{c}}\right) . \tag{3}
\end{equation*}
$$

Inserting the creep model (2) into it, gives

$$
\begin{equation*}
\dot{\sigma}=E \dot{\epsilon}-\frac{1}{\tau_{\mathrm{pr}}} \frac{E}{\sigma_{\mathrm{r}}} \sigma, \tag{4}
\end{equation*}
$$

which after rearrangements has the form

$$
\dot{\sigma}+\frac{1}{\tau} \sigma=\frac{E \epsilon_{\mathrm{r}}}{\tau} \quad \rightarrow \quad \frac{\dot{\sigma}}{\sigma_{\mathrm{r}}}+\frac{1}{\tau} \frac{\sigma}{\sigma_{\mathrm{r}}}=\frac{1}{\tau}
$$

denoting $y=\sigma / \sigma_{\mathrm{r}}$ we have the ordinary constant coefficient differential equation

$$
\begin{equation*}
\dot{y}+\frac{1}{\tau} y=\frac{1}{\tau} . \tag{5}
\end{equation*}
$$

Assuming that the solution is known at time instance $t=t_{n}$, the implicit Euler method is obtained when the equation (5) is expressed at time t_{n+1} and the time derivative at time instance t_{n+1} is replaced by the backward difference expression:

$$
\dot{y}_{n+1}+\frac{1}{\tau} y_{n+1}=\frac{1}{\tau}, \quad \dot{y}_{n+1} \approx \frac{y_{n+1}-y_{n}}{\Delta t},
$$

which gives

$$
\left(1+\frac{\Delta t}{\tau}\right) y_{n+1}=y_{n}+\frac{\text { Deltat }}{\tau} .
$$

Using the time step $\Delta t=2 \tau$ gives

$$
\begin{aligned}
& y_{0}=0, \\
& y_{1}=\frac{1}{3}(0+2)=\frac{2}{3}, \\
& y_{2}=\frac{1}{3}\left(\frac{2}{3}+2\right)=\frac{8}{9} .
\end{aligned}
$$

The stress at time $t=4 \tau$ is thus $\sigma_{2}=\frac{8}{9} \sigma_{\mathrm{r}}$.

Problem 2

Investigate the stability of the Crank-Nicolson scheme for the problem

$$
\dot{y}+a(t) y=0, \quad y(0)=y_{0}, \quad \text { where } \quad a(t)>0
$$

Solution

The Crank-Nicolson method, or the trapezoidal rule is obtained when the time derivative is evaluated as an average of the values at $t=t_{n}$ and at $t=t_{n+1}$, i.e.

$$
\dot{y}_{n+\frac{1}{2}} \approx \frac{y_{n+1}-y_{n}}{\Delta t}=\frac{1}{2}\left(\dot{y}_{n+1}+\dot{y}_{n}\right)=-\frac{1}{2}\left(a_{n+1} y_{n+1}+a_{n} y_{n}\right)
$$

which gives

$$
y_{n+1}=\frac{1-\frac{1}{2} a_{n} \Delta t}{1+\frac{1}{2} a_{n+1} \Delta t} y_{n}
$$

The stability condition is

$$
\left|\frac{1-\frac{1}{2} a_{n} \Delta t}{1+\frac{1}{2} a_{n+1} \Delta t}\right|<1
$$

which is equivalent to

$$
-1<\frac{1-\frac{1}{2} a_{n} \Delta t}{1+\frac{1}{2} a_{n+1} \Delta t}<1
$$

Two cases to be checked:

$$
\begin{equation*}
\frac{1-\frac{1}{2} a_{n} \Delta t}{1+\frac{1}{2} a_{n+1} \Delta t}>-1 \quad \Rightarrow \quad\left(a_{n}-a_{n+1}\right) \Delta t<4 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-\frac{1}{2} a_{n} \Delta t}{1+\frac{1}{2} a_{n+1} \Delta t}<1 \quad \Rightarrow \quad \frac{1}{2}\left(a_{n}+a_{n+1}\right) \Delta t>0 \tag{7}
\end{equation*}
$$

Since $\Delta t>0$ and $a(t)>0$ the second condition (7) is always fulfilled. However, the condition (6) limits the time step when the coefficient a is a decreasing function during the time period $\left(t_{n}, t_{n+1}\right)$, i.e. when $a_{n+1}<a_{n}$. Therefore the scheme is only conditionally stable. If the coefficient $a(t)$ is an increasing function during the time step, then the Crank-Nicolson scheme is stable for arbitrary time steps.

