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Problem 1

Solve the stationary two-dimensional heat transfer problem shown in the figure below by
using linear elements. Use symmetry to reduce the problem size. The material is assumed
to be homogeneous and isotropic with thermal conductivity k. The loading is given with
prescribed heat flux on the boundary x = L as ~qs = −4q̄c(y/L)(1− y/L)~i.
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Solution

The weak form is simply (now f ≡ 0)∫
Ω

(∇w)Tk∇u dA = −
∫

Ω
wqn dA.

Using the elementwise interpolation u(e) = Nu (e) and w(e) = Nw (e), the element stiffness
matrix has the form ∫

Ω(e)

kBTB dA,

where B is the discrete gradient operator matrix. In the case of linear elements, it has
the form

B =

[
b1 b2 b3
c1 c2 c3

]
.

The elements 1 and 3 are equal as well as elements 2 and 4. The local nodes are
numerated as shown in the table below thus for the elements 1 and 3 the coefficients
which are needed are:

b1 = y2 − y3 = 0,
b2 = y3 − y1 = 1

2L,
b3 = y1 − y2 = −1

2L,

c1 = x3 − x2 = −L,
c2 = x1 − x3 = 0,
c3 = x2 − x1 = L.

node
elem. 1 2 3

1 1 4 2
2 1 3 4
3 3 6 4
4 3 5 6
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The area of all elements is A = 1
4L

2, thus

K(1) = K(3) = k

 0 0 0
0 1

4 −1
4

0 −1
4

1
4

+ k

 1 0 −1
0 0 0
−1 0 1

 =
k

4

 4 0 −4
0 1 −1
−4 −1 5

 .
For elements 2 and 4:

b1 = y2 − y3 = −1
2L,

b2 = y3 − y1 = 1
2L,

b3 = y1 − y2 = 0,

c1 = x3 − x2 = 0,
c2 = x1 − x3 = −L,
c3 = x2 − x1 = L.

K(2) = K(4) = k

 1
4 −1

4 0
−1

4
1
4 0

0 0 0

+ k

 0 0 0
0 1 −1
0 −1 1

 =
k

4

 1 −1 0
−1 5 −4

0 −4 4

 .
Since the teperature is prescribed for nodes 1,2,3 and 5 there are only two active unknowns,
i.e. u4 and u6. The local-global degrees of freedom are related as shown in the table below
(same table as before, but now the essential boundary nodes are not shown)

node
elem. 1 2 3

1 - 4 -
2 - - 4
3 - 6 4
4 - - 6

The global stiffness matrix can be assembled from the element contributions as

K44 = K
(1)
22 +K

(2)
33 +K

(3)
33 ,

K46 = K
(3)
32 ,

K66 = K
(3)
22 +K

(4)
33 ,

thus

K =

[
K44 K46

K64 K66

]
=
k

4

[
10 −1
−1 5

]
.

In the load vector there is only one non-zero component, which is

f6 = −
∫
N3~q · ~nds =

∫
N34qc(y/L) (1− (y/L)) ds =

L

12
(qc + 41

2
3
4qc + 0) = 5

24qcL.

The global balance equations are

k

4

[
10 −1
−1 5

]{
u4

u6

}
=

{
0
5
24

}
qcL,

which has the solution{
u4

u6

}
=

1

49

[
5 1
1 10

]{
0
5
24

}
qcL

k
=

5

294

{
1
10

}
qcL

k
.
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The heat flux is constant in each element

q (e) = −kBu (e) = − k

2A(e)

[
b1 b2 b3
c1 c2 c3

]
u

(e)
1

u
(e)
2

u
(e)
3

 .

For element 4, u
(4)
1 = u

(4)
2 = 0, u

(4)
3 = u6, thus

q (e) = − k

2A(e)

{
b3
c3

}
u6 =

{
0

−50/147q̄c

}
.

Calculate the heat flux for other elements and draw the vectors!
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Problem 2

Compute the St. Venant’s torsion constant It for a beam having a square cross-section
(side length L) and made of a homogeneous isotropic material, by using the finite ele-
ment method and a triangular mesh as shown in the figure below. The problem can be
formulated with St. Venant’s stress function Φ as

−Φ,xx − Φ,yy = 2Gθ,

with boundary conditions Φ = 0. The torsional constant is obtained from equation

It =
2

Gθ

∫
Ω

Φ(x, y)dA.

Determine also the shear stress distribution from a twist θ = 1/L. The shear stresses can
be computed from

τzx = Φ,y, τzy = −Φ,x.
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Solution

The weak form of the PDE is

−
∫

Ω
Φ̂∆Φ dA =

∫
Φ̂2Gθ dA.

The first integral can be transformed as

−
∫

Ω
Φ̂ ∆Φ dA = −

∫
Ω

Φ̂ ∇·∇Φ dA = −
∮
∂Ω

Φ̂ ∇Φ·n dS+

∫
Ω
∇Φ̂·∇Φ dA =

∫
Ω
∇Φ̂·∇Φ dA.

The stiffness matris is thus similar to the heat transfer problem when the thermal con-
ductivity k = 1.

The element matrices from elements 1, 3 and 4 are identical. Thus it is necessary to
form only the element matrices for elements 1 and 2. The constants bi and ci

b1 = y2 − y3, c1 = x3 − x2

b2 = y3 − y1, c2 = x1 − x3

b3 = y1 − y2, c3 = x2 − x1

(1)

are calculated in the table below
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elements 1,3,4 element 2
i bi ci bi ci

1 -L/4 -L/4 0 -L/4
2 L/4 0 L/4 L/4
3 0 L/4 -L/4 0

The area of all elements is A(e) = L2/32 and the element matrices are

K (1) =
1

2

 1 −1 0
−1 1 0

0 0 0

+
1

2

 1 0 −1
0 0 0
−1 0 1


=

1

2

 2 −1 −1
−1 1 0
−1 0 1

 , (2)

K (2) =
1

2

 0 0 0
0 1 −1
0 −1 1

+
1

2

 1 −1 0
−1 1 0

0 0 0


=

1

2

 1 −1 0
−1 2 −1

0 −1 1

 . (3)

The local-global numbering is shown in the table below

node
elem. 1 2 3

1 - - 1
2 - 2 1
3 - - 2
4 1 2 3

The assembly of the global stiffness matrix is below

K11 = K
(1)
33 +K

(2)
33 +K

(4)
11 ,

K12 = K
(2)
32 +K

(4)
12 ,

K13 = K
(4)
13 , (4)

K22 = K
(2)
22 +K

(3)
33 +K

(4)
22 ,

K23 = K
(4)
23 ,

K33 = K
(4)
33 ,

The global stiffness matrix is thus

K =

 2 −1 −1
2

−1 2 0
−1

2 0 1
2

 , (5)

The inverse of the stiffness matrix is

K−1 =

 1 1
2 1

1
2

3
4

1
2

1 1
2 3

 . (6)
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The load vector is

f1 = f
(1)
3 + f

(2)
3 + f

(4)
1 = 3 · 2

3Gθ
1
32L

2 = 1
16GθL

2,

f2 = 1
16GθL

2, (7)

f3 = 1
48GθL

2.

Finally the nodal values of the stress function Φi can be computed as

Φ1 = 11
96GL

2θ ≈ 0.1146GL2θ,

Φ2 = 17
192GL

2θ ≈ 0.0885GL2θ, (8)

Φ3 = 5
32GL

2θ ≈ 0.1563GL2θ.

Let’s compute the integral

It =
2

Gθ

∫
Ω

ΦdA = 8
2

Gθ

4∑
e=1

∫
Ω(e)

ΦdA.

Since the stress function Φ is linear in each element, the element integrals are easy to
compute ∫

Ω(e)

ΦdA =
3∑

i=1

∫
Ω(e)

NiΦidA =
1

3
A(e)

3∑
i=1

Φi,

and (A(e) = L2/32)

1

Gθ

∫
Ω(1)

ΦdA =
1

3

L4

32

11

96
,

1

Gθ

∫
Ω(2)

ΦdA =
1

3

L4

32

(
11

96
+

17

192

)
,

1

Gθ

∫
Ω(3)

ΦdA =
1

3

L4

32

17

192
,

1

Gθ

∫
Ω(2)

ΦdA =
1

3

L4

32

(
11

96
+

17

192
+

5

32

)
.

The value for the torsion constant is thus

It = 161
3

1
32L

4
(
311

96 + 3 17
192 + 5

32

)
= 147

1152L
4 ≈ 0.1276L4.

The exact solution with three significant digits is It = 0.141L4.
let’s finally compute the shear stresses, which are constants in each element since we

have used linear elements:
τzx = Φ,y, τzy = −Φ,x.

Element 1:

Φ = N3Φ1,

Φ,x ≡ 0,

Φ,y =
c3

2A
Φ1 =

11

24
GLθ.



MEI-55200 solutions to exercise 4 7

Element 2:

Φ = N2Φ2 +N3Φ1,

Φ,x =
b2
2A

Φ2 +
b3
2A

Φ1 = − 5

48
GLθ,

Φ,y =
c2

2A
Φ2 +

c3

2A
Φ1 =

17

48
GLθ.

Element 3:

Φ = N3Φ2,

Φ,x ≡ 0,

Φ,y =
c3

2A
Φ2 =

17

48
GLθ.

The element 4 correspondingly.


