MFEI-55200 solutions to exercise 4 1

Problem 1

Solve the stationary two-dimensional heat transfer problem shown in the figure below by
using linear elements. Use symmetry to reduce the problem size. The material is assumed
to be homogeneous and isotropic with thermal conductivity k. The loading is given with
prescribed heat flux on the boundary = = L as ¢ = —4¢.(y/L)(1 — y/L)i.
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Solution

The weak form is simply (now f = 0)

/(Vw)Tk:VudA: —/ wqy dA.
Q Q

Using the elementwise interpolation u(® = Nu(® and w(® = Nw(®), the clement stiffness
matrix has the form

/ kBTB dA,
Qe
where B is the discrete gradient operator matrix. In the case of linear elements, it has
the form
B { bi by b3 ] _
c1 Cc2 C3

The elements 1 and 3 are equal as well as elements 2 and 4. The local nodes are
numerated as shown in the table below thus for the elements 1 and 3 the coefficients
which are needed are:

b = y—ys = 0, ci = wx3—1x2 = —L,
by = ys—y1 = 3L, g = z1—23 = 0,
b3 = Y1 Y2 = —%L, C3 = T9g—T1 = L.
node

elem. |1 2 3

1 1 4 2

2 1 3 4

3 3 6 4

4 3 5 6
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The area of all elements is A = iL2, thus

0 0 0 1 0 -1 k 4 0 —4
KO =K® =k |0 % -1l +k| 00 o =7 0 1 -1
1
0o -1 2 -10 1 4 -1 5
For elements 2 and 4:
b = yp—ys = —3L, ca = xz3—z2 = 0,
b2 = Ys—y1 = %L, Cy = T1 —T3 = —L,
bs = y1—y2 = 0, c3 = wp2—x1 = L.
3 -3 0 0 0 0 1 -1 0
K?=KW=f| 1 Lol+r|0o 1 -1 =71 5
0 0 0 0 -1 1 0 —4 4

Since the teperature is prescribed for nodes 1,2,3 and 5 there are only two active unknowns,
i.e. uq and ug. The local-global degrees of freedom are related as shown in the table below
(same table as before, but now the essential boundary nodes are not shown)

node
elem. |1 2 3
1 - 4 -
2 - - 4
3 - 6 4
4 - - 6

The global stiffness matrix can be assembled from the element contributions as

Ku = Ky + K3 + K53,
Ky = Kg(;;)7
Ko = Ki3 + K3,

thus

K [ Ku K] _k[ 10 -1
T | Kes Kes | 4| -1 51

In the load vector there is only one non-zero component, which is

7 T L
fo = —/Ngq iids = /N34qc(y/L) (1= (/L) ds = (g + 4330, +0) = FracL.

The global balance equations are

k10 =1 ]fus\_[ O I
Al -1 5| Vw g S
which has the solution

U4 _i 5 1_
Ug 49| 1 10_

lor o
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The heat flux is constant in each element

k [b by b “
(e) — _ (e) — _ %2 U3 (e)
q kBu 5400 [ oy cs ] u%)
U (&
3
For element 4, u§4) = ugl) =0, ugA‘) = ug, thus

(e)__ k bg U — 0
T = 7540 5 ["07 | —50/1474,

Calculate the heat flux for other elements and draw the vectors!

b
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Problem 2

Compute the St. Venant’s torsion constant I; for a beam having a square cross-section
(side length L) and made of a homogeneous isotropic material, by using the finite ele-
ment method and a triangular mesh as shown in the figure below. The problem can be
formulated with St. Venant’s stress function ® as

P = Dy = 2G0,

with boundary conditions ® = 0. The torsional constant is obtained from equation

2
L=— [ @ A.

Determine also the shear stress distribution from a twist § = 1/L. The shear stresses can
be computed from

Toz = Py, Toy = =P 5.
Y
A
U3
1 L
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Uy U9
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Solution

The weak form of the PDE is

- / PADdA = / D2GH dA.
Q
The first integral can be transformed as
—/ DADIA = —/ d V-VOdA = —7{ o V<I>-nd5+/ VOV dA = / V®-VddA.
Q Q o0 Q Q
The stiffness matris is thus similar to the heat transfer problem when the thermal con-
ductivity k = 1.

The element matrices from elements 1, 3 and 4 are identical. Thus it is necessary to
form only the element matrices for elements 1 and 2. The constants b; and ¢;

by = y2—ys, c1 = I3— T2
bo = yz3—y1, < = T —x3 (1)
b3 = y1— e, c3 = T2— T

are calculated in the table below
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elements 1,3,4 | element 2
i bz‘ ‘ C; bi ‘ C;
1|-L/4| -L/4 0 -L/4
2| L/4 0 L/4 | L/4
3 0 L/4 | -L/4 0
The area of all elements is A(®) = L2/32 and the element matrices are
1 1 —1 0] 1 1 0 —1
K(l):§—1 LOf+5] 00 0
. 0 0 0 -1 0 1
1 2 -1 -1
= 5| -1 1 o (2)
| -1 0 1
1 [0 0 0 1 1 =10
K<2>:§01—1+§—1 10
|0 -1 1 0 00
1 [ 1 -1 0
= 5|1 2 -1 (3)
0o -1 1
The local-global numbering is shown in the table below
node
elem. |1 2 3
1 - -1
2 - 21
3 - -2
4 1 2 3
The assembly of the global stiffness matrix is below
K = KRR
Ky = K + K},
Kiz = K3, (4)
K = KRG+
K23 = Kéé)a
K33 = Kg(é),
The global stiffness matrix is thus
2 -1 -1
K=| -1 2 01, (5)
1 1
-3 0 3
The inverse of the stiffness matrix is
111
-1_ |1 58 1
Ko=12 7% 2 (6)
15 3
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The load vector is
o= B0+ P Y =3 260517 = LGor?,
P LaGor?, (7)
fs = %G@LQ.

Finally the nodal values of the stress function ®; can be computed as

), = HGL%0 ~0.1146GL%,
®y, = LLGL?0 ~ 0.0885G L0, (8)
3 = ZGL%0 ~0.1563GL%0.

Let’s compute the integral

4
2 2
=G PG X

Since the stress function @ is linear in each element, the element integrals are easy to

compute
3

3
1
ddA = N;®;dA = ZA©) D,
/Q(e) Z 3 ;

i=1 /2

and (A(®) = L2/32)

1 1L411
/ DA —
)

Go 33296’

1 114 /11 17
— PdA = —— | =+ —
GO Joe 332 (96+ 192)’
1 1L* 17

— PdA = ———

GO /Q@) 332192’

1 14 /11 17 5
— PdA = ——(—+—+—).
Go /Q@) 332 (96 + 192 + 32>

The value for the torsion constant is thus
1174 (qll 17 5 147 74 4
I; =165 55 L (356 + 3195 + 35) = 155 1" ~ 0.1276 L%

The exact solution with three significant digits is I; = 0.141L*.
let’s finally compute the shear stresses, which are constants in each element since we
have used linear elements:

Toz = Py, Toy = —Py.
Element 1:
¢ = N3P,
= 0,

c 11
o, = ﬁ@lzﬁaw.
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Element 2:
d = Ny®y + N3Pq,
bo bs 5
b, = = 2P, =—-——GLI
o 2A 2 T g1 = T
C9 C3 17
o, = —d — o = —GLO.
Y satet o %= gELY
Element 3:
¢ = N3P,
e = 0,
o C3 _ 17
¢, = 2A<I>2 = 48GL«9.

The element 4 correspondingly.



