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Problem

Solve the 1-D stationary heat transfer problem

−(ku′)′ = 0

of a wall x ∈ (0, L) using FEM. Let's assume that the outside temperature at x = 0 is
u0 > 0. What is the power needed at x = L to maintain the inside temperature 2u0? The
conductivity of the wall is de�ned as

k(x) =


34k0, x ∈ (0, L1) = (0, 3

14L), concrete,

k0, x ∈ (L1, L2) = ( 3
14L,

13
14L), glass wool,

4k0, x ∈ (L2, L) = (1314L,L), gypsum.

What is the thermal transmittance (suom. lämmönläpäisykerroin), i.e. the U-value of the
wall. The values are k0 = 0.05 W/(mK) and L = 0.28 m (L1 = 6 cm, L2 = 26 cm).

Solution: Let's discretize the wall into three linear elements, one for the concrete, one
for the glass wool and one for the gypsum plate. Since at the both boundaries essential
boundary conditions are given, thus there are only two unknowns. The weak form is∫ L

0
û′ku′ dx = 0.

For linear element the sti�ness matrix (conductivity matrix) is

K (e) =
k(e)

h(e)

[
1 −1
−1 1

]
.

For the element of the concrete part:

K (1) =
34k0
3
14L

[
1 −1
−1 1

]
=

476k0
3L

[
1 −1
−1 1

]
,

glass wool

K (2) =
k0
10
14L

[
1 −1
−1 1

]
=

7k0
5L

[
1 −1
−1 1

]
,

and for the gypsum plate

K (3) =
4k0
1
14L

[
1 −1
−1 1

]
=

56k0
L

[
1 −1
−1 1

]
.

The global system is thus

k0
L


476
3 −476

3 0 0
−476

3
476
3 + 7

5 −7
5 0

0 −7
5

7
5 + 56 −56

0 0 −56 56




u1
u2
u3
u4

 =


0
0
0
0

 .

Since the boundary temperatures are prescribed, i.e. u1 = u0 and u4 = 2u0 there are only
two active unknowns. The �rst and fourth equations above are unnecessary. Moving the
terms related to u1 and u4 to the r.h.s. gives[

160.06̄ −1.4
−1.4 57.4

]{
u2
u3

}
=

{
158.6̄
112

}
u0.
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The solution is
u2 = 1.008535u0, u3 = 1.975818u0.

The heat �ux is constant over the wall, let's compute it from the element 1

q(1) = −k(1)u′ = −34k0
(1.008535− 1.0)u0

3
14L

= −1.5129
k0u0
L

.

The �ux is thus directing to the left. The required power inside is thus the absolute value
of the �ux.

If u0 = 1◦C, then

q(1) = −0.2418
W

m2

The U-value is thus 0.2418 W/m2K.
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Problem:

Solve by FEM the following stationary 1-dimensional di�usion-reaction equation

−ku′′ + cu = 0, u(0) = 0, u(L) = ūL,

where k, c are positive constants c = β2kL−2. Use three equal elements in the domain.
Perform computations with the values β = 1 and 100.

Compute the problem also in the case where the part∫
cûudx

in the conductivity matrix is lumped. A lumped matrix is obtained as[
a11 a12
a21 a22

]
−→

[
a11 + a12 0

0 a21 + a22

]
.

What can be concluded?

Solution: Let's multiply the equation by the weight function (or test function) û and
integerate the resultin terms over the domain and integrate by parts the second order
derivative term. Due to Dirichlet's boundary conditions we have û(0) = û(L) = 0 and we
get

−ku′′ + cu = 0

−
∫ L

0
ku′′ûdx+

∫ L

0
cuûdx = 0

−k
∣∣∣∣L
0

u′û+ k

∫ L

0
u′û′dx+ c

∫ L

0
uûdx = 0

k

∫ L

0
u′û′dx+ c

∫ L

0
uûdx = 0

Using the method of Galerkin and divide the domain into three equal elements u =∑
i
Niui, û =

∑
i
Niûi.

∑
e

∫ xe1

xe0

k
∑
j

d

dx
Njuj

∑
i

d

dx
Niûidx+

∫ xe1

xe0

c
∑
j

Njuj
∑
i

Niûidx

 = 0

substituting ξ = 2
h(x− xc), dx = h

2dξ,
d
dx = 2

h
d
dξ

∑
e

[∑
i
ûi
∑
j

(
2k
h

∫ 1
−1N

′
iN
′
jdξ + ch

2

∫ 1
−1NiNjdξ

)
ui

]
= 0

⇒ K
(e)
ij = 2k

h

∫ 1
−1N

′
iN
′
jdξ + ch

2

∫ 1
−1NiNjdξ
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Using linear elements, the interpolation functions are N1 = 1
2(1−ξ) and N2 = 1

2(1+ξ).
The element sti�ness matrix is

K (e) =
k

h

[
1 −1
−1 1

]
+
ch

6

[
2 1
1 2

]
=

k

h

[
1 −1
−1 1

]
+
β2kh

6L2

[
2 1
1 2

]
=

k

h

([
1 −1
−1 1

]
+
β2

6

(
h

L

)2 [
2 1
1 2

])
.

In this case h = L/3 the contribution from one element is

K (e) =
3k

L

([
1 −1
−1 1

]
+
β2

54

[
2 1
1 2

])
.

The global equilibrium equation is K
(1)
22 +K

(2)
11 K

(2)
12 0

K
(2)
21 K

(2)
22 +K

(3)
11 K

(3)
12

0 K
(3)
21 K

(3)
11




u2
u3
ūL

 =


0
0
0

 ,

which can be written as[
K

(1)
22 +K

(2)
11 K

(2)
12

K
(2)
21 K

(2)
22 +K

(3)
11

]{
u2
u3

}
=

{
0

−K(3)
12 ūL

}
.

Let's insert the parameter values[
108 + 4β2 β2 − 54
β2 − 54 108 + 4β2

]{
u2
u3

}
=

{
0

54− β2
}
ūL .

with β = 1 and β = 100 we get the equations[
112 −53
−53 112

]{
u2
u3

}
=

{
0
53

}
ūL

and [
40108 9947
9947 40108

]{
u2
u3

}
=

{
0

−9947

}
ūL

solutions for nodal temperatures u2 and u3 are:

(β = 1) :

{
u2
u3

}
=

{
0.2885
0.6098

}
ūL , (β = 100) :

{
u2
u3

}
=

{
0.0655
−0.2643

}
ūL .

For large values of the reaction coe�cient c the FE solution starts to oscillate. The solutions
are drawn in �gure 1.

If the submatrix corresponding to the reaction term is lumped, i.e. the consistent
matrix

ch

6

[
2 1
1 2

]
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Figure 1: Numerical solutions by linear FEM as compared to the exact solution (solid line).
Solution with the standard Galerkin is drawn by dashed line and the "lumped" solution
by dotted line.

is replaced by the lumped one
ch

2

[
1 0
0 1

]
,

we get the element sti�ness matrix (conductivity matrix)

K (e) =
k

h

[
1 −1
−1 1

]
+
ch

2

[
1 0
0 1

]
=

k

h

([
1 −1
−1 1

]
+
β2

2

(
h

L

)2 [
1 0
0 1

])
.

The global equilibrium equation is thus[
54 + 2β2 −27
−27 54 + 2β2

]{
u2
u3

}
=

{
0
27

}
ūL .

It can be seen that the in�uence of the reaction term has vanished from the o�-diagonal
terms and also from the rhs vector (=same thing)

(β = 1) :

{
u2
u3

}
=

{
0.3029
0.6282

}
ūL , (β = 100) :

{
u2
u3

}
=

{
0.0000
0.0013

}
ūL .

Clearly the solution is stable. What about the accuracy? Determine the errors in nodal
temperatures!
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Problem:

Solve the 1-D stationary heat transfer problem

−ku′′ = f0

with boundary conditions

q(0) = −ku′(0) = −q0 and q(L) = −ku′(L) = αq0.

The conductivity k and heat source f0 are constants (q0 = 1
2f0L) and α is a positive

dimensionless constant. Solve the problem by using a single quadratic element. Does the
problem have a solution for arbitrary values of α (α ≥ 0)? Explain the sitution physically.

Solution:

−ku′′ = f0

−
∫
ku′′ûdx =

∫
f0ûdx

−
∣∣∣∣ku′û+

∫
ku′û′dx =

∫
f0ûdx∫

ku′û′dx =

∫
f0ûdx+ ku′(L)û(L)− ku′(0)û(0)

Using hierarchic interpolation u =
3∑
j=1

Njuj and û =
3∑
i=1

Niûi, where N1 = 1
2(1 − ξ),

N2 = 1
2(1 + ξ) ja N3 =

√
6
4 (ξ2 − 1), and substituting q0 = 1

2f0L and h = L we get

∑
i

ûi

2k

h

1∫
−1

N ′i
∑

N ′jujdξ

 =
∑
i

ûi

f0h
2

1∫
−1

Nidξ − αq0Ni(L)− q0Ni(0)



⇒ 2k

L

 1
2 −1

2 0
−1

2
1
2 0

0 0 1


u1
u2

∆u3

 =
f0L

2


1
1

−
√
6
3

− αq0


0
1
0

− q0


1
0
0

 =
f0L

2


0

1− α
−
√
6
3


From the �rst equation k

L(u1−u2) = 0 we get u1 = u2. The second equation k
L(−u1+u2) =

f0L
2 (1 − α) requires hence α = 1. In other words, the heat produced by the source term

will �ow out equally from both boundaries. The balance law q0 + qL + f0L = 0 has to be
ful�lled since this is a stationary case.

From the lowest equation we get the amplitude for the bubble mode ∆u3N3(ξ = 0.5) =

−
√
6

12 f0L
2/k

(
−
√
6
4

)
= 1

8f0L
2/k. For the given boundary conditions we cannot solve the

temperature uniquely.


