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Problem 2

Solve the diffusion-reaction equation with boundary conditions u(0) = ug > 0,u(L) =0

d*u 27.7-2
—k— +bu=0, where b= kL
dx?

using a two parametric trial function for temperature u and
1. the Galerkin’s method,
2. the least square method.

Draw the results with the values of 5 = 1,10, 100.

Solution

The weak form of the diffusion-reaction problem is
L 2
d
/ a (—k:?; + bu> de =0, where b= p%kL72.
0 dx

A two-parametric trial function for temperature could be

u(§) = ¢o(§)uo + d1(§)an + P2(§)az = (1 — up + &(1 — §ar + (1 — &)(1 — 2§)az,

where ¢ = z/L and a proper test function

u(§) = ¢1(§)a1 + P2(§)de.

Changing to the dimensionless co-ordinate £, the weak form can be written as (dx =
Ld¢,d/dx = L=1d/d¢):

ko[! N N
L/o (@' + B*a) dé =0,

since 4(0) = u(L) = 0 and the prime now denotes differentiation with respect to the
dimensionless co-ordinate &.

Case a: the Galerkin method. Testing with the function ¢; gives the equations
1
/ (05 (dhuo + Pron + dhas) + B2i(douo + pron + paaz)] dE,
0
which after rearrangements has the form
1 1 1
| @i+ Fononydcar+ [ (@hoh+ B2oi0m) dca = = [ (6l + Fouvn) deuo

In short )
ZKijaj = fi,
j=1
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where
1
Ky — /0 (B4, + Bicsy) d,

1
fi= —/ (Phh + B2 icdo) dE uo.
0

Derivatives of the basis functions are:

¢0:1_£a ¢{):_17
¢1:§_§27 ¢/1:1_2£7
Py = & — 362 4 283 Py =1 — 6¢ + 662,

Integration gives

! 111
_ o 2 2 _¢2N\2 _ - T Q2
K= [ (120 + 8- €] de = 5 + 5
K2 = K91 =0,
Koo = [ [(1— 66+ 6622+ 82(e — 362+ 26%)] dg = L + L g2
= [ [0= 6 + 6637 + 6 362+ 26 d = £ + 3o,

! 7
fi== [ =156 =26 +.€)] duo = 55w,

1
fo= _/0 [~14 66 — 662 + B2(€ — 462 + 56" — 26)] dE o = == Fuo

Solution is thus

105 7

- > — U g2,
M= og g agl W 2= mgrmagl
The limiting values occur when =0 or 5 — oo, giving
105
6=0: a=ay=0, or B—00: a1—>—Tu0, a2—>—§u0.
The solution is shown below for § = 1,10 with the analytical solution, see exercise 1,
problem 1b.
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Case b: the least square method. Let’s define the residual

R = _k(¢1,xxal + ¢2,zxa2) + b(QZ)OuO + ¢1041 + ¢2012)
= booug + (—kd1,20 + bp1)ar + (k2 ze + bipa)aa,

L
I_;/ R*dz.
0

The residual can be transformed to a form

and the least square interal

R = 2 [Bouuo + (6 + For)an + (~6 + Féa)as)],

where the prime denotes differentiation with respect to £. Defining a non-dimensional
residual R and a non-dimensional least square integral as

~ ~ 1 ~
R = Boouo + (=9 + Bdr)on + (~) + Pé)az, T—1 /0 R de.

The existence of an extremum point requires

- 1 .
oI :/ R@Rdg:07
0

8&1' 8&1'
where _
OR " 2
The resulting equation system is
2
d Ky=fi, i=12
i=1

and where
1
Kig = [ (ol + 00 (=0} + ;) de
0
1
fim =8 [ onl(~i + B0 deun
0
Carrying out the integrations result in
Ki=4-25"+ %8%
K9 = Ko =0,
Koy =12+ 25% + 51587,
fl = _52(1 + T1252)u07
fo==B*(1+ 458%)uo.
The solution is

A+ pFY) o PEgh)
4-2p2 4 Lpt 12 4 232 + 3584

o) = —
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The limiting values occur when 8 =0 or 5 — oo, giving

B=0:

ar =as =0, or

L5
(651 —=Ug
2 )

a2

ST
90

The least square solution is shown below for § = 1,10 with the analytical solution.
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Problem 1
Solve the following beam-column problem:

d* d?
EId Z +Pd 5 = [ = constant,
v(0) =v'(0) =0, M(L)=—-EI'(L)=0,
0,

Q(L) — PY'(L) = —EIV"(L) — Pv'(L)

using the Galerkin method using a two-parametric polynomial trial function. Draw the tip
deflection as a function of the compressive load P.

If the transverse load f = 0, the problem is an eigenvalue problem. Solve the eigenvalues
P and the corresponding eigenmodes (critical loads, and buckling modes).

Solution

Let’s multiply the differential equation with the test function © and integrate over the
domain

L
/ o(EIv™ + Py — f)dx = 0.
0

Integrating by parts will result in the form
L

H(EI" + Pv') —
0

L L
VEIV" + / ("EIV" —'Pv' —of)dx = 0.
0

0

Since at the boundary z = 0 essential boundary conditions are set for both the deflection
and rotation, the test function has to satisfy ©(0) = ¢/(0) = 0, thus

L
o(L) [EIV"(L) + Pv'(L)] — o'(L)EIV'(L) + / (W"EIV" —'Pv' — of)dx = 0.
0
Finally we obtain
L
/ ("B —'Pv' — of)dx = 0.
0

Notice the minus sign in the second term of the integral.
Proper two-parametric trial function and the corresponding test function are

v(z) = (z/L)%*a1 + (z/L)%a0, 0(z) = (x/L)*6; + (x/L)3Gs.

Testing with (x/L)? results in the equation

(

2 6x 2x 2z 322 x2 -
ﬁE a1+ L3a2 _ﬁp ﬁOZl"FFOQ _ﬁf dz = 0.
(

Testing with (x/L)3 results in the equation

6x 2 6z 3 2 2z 3w2 a3

Let’s define the compressive axial force in the form

ET

P=2
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where A is a dimensionless load parameter. Integrating the expressions above results in

EIT4—4%)N 6-—3)\ a
oloch b a1 "

Determinant of the dimensionless stiffness matrix is

NN

det(K) = (4 — 23012 - 20) — (6 - 30)? = ZA7 — B +12.

Solution of the discrete equilibrium equations (1) is

{041}_ 1 12— 2) gA—sz
as BN _Ba112] 3A-6 4—3A

fLY
} B

00| =

The tip deflection is
3 7
5 -t L

3 26 ’
SN - B\ 112 EI

which is shown as a function of the load parameter A in the following figure. The displace-
ment is normalized to the tip deflection without compressive load, i.e. when A = 0,=
v(L) = vy = 3 fL*/EL

v(L) =a; +as =
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Notice that the displacements start to increase rapidly when A > 2, which is about 20
% of the critical buckling load A, = %73 ~ 2.467. The superposition principle is not valid

for the axial load P. Why?
When f = 0 the proble is an linear eigenvalue problem. The critical load P can be

solved from the generalized linear eigenvalue problem

(e wl-z[]iDUat-{0} @

or expressed in an dimensionless form
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A homogeneous linear equation has a non-trivial solution only if the coefficeint matrix is
singular, i.e. if det(K) = 0, which gives
A=224+,/(52)" —80 ~ 24860 (or 32.18).

The error to the exact value is only 0.8 %.
The buckling mode can be solved when substituting the critical value to the equation

(2) or (3), giving
0.6853a1 + 2.271ay = 0.

The solution for the buckling mode is naturally non-unique. Only the form of the deflection
can be determined, the absolute values are undetermined. Therefore the buckling mode is

of the form )
vi(z) =« (%) (1 — 0.302%) )

which is shown below
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The higher, practically irrelevant bucling load is Ay 2 ~ 32.18, which gives
—38.9a;1 —42.27a9 = 0,

and the mode has the form
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