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Problem 1

For example, two problems where standard numerical schemes behave badly are in the
stationary one-dimensional case: (a) the di�usion-convection equation and (b) the reaction-
di�usion equation

−kd
2u

dx2
+ ρcv

du

dx
= 0, (1a)

−kd
2u

dx2
+ bu = 0, where b = β2kL−2 (1b)

and β is a dimensionless parameter. It is assumed here that the physical parameters
k, ρ, c, v, b are all constants in the domain Ω = {x|x ∈ (0, L)}. Solve the problem with
boundary conditions u(0) = u0 > 0, u(L) = 0. Draw the solution with di�erent values of
the non-dimensional Péclet number P = ρcvL/k, e.g. P = 1, 10, 100, and β2 = 1, 10, 100.
What happens when P →∞ and β →∞?

Solution for the case a: Let's try the solution in the form u(x) = exp(rx). Substituting
it into the di�erential equation gives

(−kr2 + ρcvr) exp(rx) = 0 ⇒ r = 0 or r =
ρcv

k
.

Thus u(x) = A exp(ρcvx/L) +B. Using the boundary conditions gives

u(0) = u0 ⇒ A+B = u0

u(L) = 0 ⇒ B = −A exp(ρcvL/k) = −A exp(P ),

A =
u0

1− exp(P )
, B = −u0

exp(P )

1− exp(P )
.

The solution is thus

u(x) =
u0

1− exp(P )
(exp(Px/L)− exp(P ))
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Solution for the case 2: Substituting the trial solution u(x) = exp(rx) into the di�er-
ential equation gives

(−kr2 + b) exp(rx) = 0 ⇒ r = ±
√
b/k = ±β/L.

Thus u(x) = A exp(βx/L) +B exp(−βx/L). Using the boundary conditions gives

u(0) = u0 ⇒ A+B = u0

u(L) = 0 ⇒ B = −A exp(2β)

A =
u0

1− exp(2β)
, B = −u0

exp(2β)

1− exp(2β)
.

The solution is thus

u(x) =
u0

1− exp(2β)
(exp(βx/L)− exp(2β) exp(−βx/L)) .
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Problem 2

Adjoint operator D∗ for a di�erential operator D in a domain Ω is de�ned with functions
u, v ∈ A as ∫

Ω
vDudΩ =

∫
Ω

(D∗v)udΩ.

The operator D is self adjoint if D = D∗. Investigate which ones of the following operators
are self adjoint:

D = − d2

dx2
, A = {u|u ∈ C2(0, L), u(0) = u(L) = 0} (2a)

D = − d2

dx2
+ k

d

dx
, A = {u|u ∈ C2(0, L), u(0) = u(L) = 0} . (2b)

Notation Cn(0, L) denotes a set of n-times continuously di�erentiable functions in an in-
terval (0, L), and k is a positive constant.

Solution for the case a: Integration by parts gives

−
∫ L

0
vu′′dx = −

∣∣∣∣L
0

vu′ +

∫ L

0
v′u′dx =

∫ L

0
v′u′dx =

∣∣∣∣L
0

v′u−
∫ L

0
v′′u dx = −

∫ L

0
v′′u dx

for all functions u, v ∈ A, hence D∗ = − d2

dx2 and D∗ = D, thus the operator D is self
adjoint.

Solution for the case b:

D = − d2

dx2
+ k

d

dx
, A = {u|u ∈ C2(0, L), u(0) = u(L) = 0}

Solution:∫ L

0
v(ku′ − u′′)dx =

∣∣∣∣L
0

(kvu− vu′)−
∫ L

0
(kv′u− v′u′)dx =

∫ L

0
(kv′u′ − v′u)dx

=

∣∣∣∣L
0

v′u+

∫ L

0
(−v′′u− kv′u)dx = −

∫ L

0
(v′′ + kv′)u dx

⇒ D∗ = − d2

dx2
− k d

dx
6= D

D is not self adjoint.
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Problem 3

A di�erential operator D is positive in a domain Ω with functions belonging to the set A,
if ∫

Ω
uDudΩ > 0, ∀u ∈ A.

Show, that the following operators are positive:

D2 = − d

dx
k
d

dx
, A = {u|u ∈ C2(0, L), u(0) = u(L) = 0} (3a)

D4 =
d2

dx2
EI

d2

dx2
, A =

{
u|u ∈ C4(0, L), u(0) = u′(0) = u(L) = u′(L) = 0

}
, (3b)

and k,EI > 0. Notation Cn(0, L) denotes a set of n-times continuously di�erentiable
functions in an interval Ω = {x|x ∈ (0, L)}.

Solution:

Let's investigate the integral I(u):

I2(u) = −
∫ L

0
u(ku′)′dx = −

∣∣∣∣L
0

uku′ +

∫ L

0
k(u′)2dx =

∫ L

0
k(u′)2dx > 0

since if u′ ≡ 0 then u = c=constant, and due to the boundary conditions u(0) = u(L) = 0
then u would vanish identically.

In a similar way for the fourth order operator

I4(u) =

∫ L

0
u(EIu′′)′′dx

=

∣∣∣∣L
0

u(EIu′′)′ −
∫ L

0
u′(EIu′′)′dx

= −
∣∣∣∣L
0

u′EIu′′ +

∫ L

0
EI(u′′)2dx

=

∫ L

0
EI(u′′)2dx > 0,

since if u′′ ≡ 0 then u = ax+ b, and since u(0) = u(L) = 0 then u would vanish identically.
Notice that the material/sectional constants have to be positive.
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Problem 4

Investigate the type (parabolic/hyperbolic) of the following partial di�erential equations
(PDEs)

ρc
∂u

∂t
− λ∂

2u

∂x2
= 0, (4a)

ρA
∂2u

∂t2
− EA∂

2u

∂x2
= 0, (4b)

ρA
∂2u

∂t2
+ EI

∂4u

∂x4
= 0, (4c)

σ
∂A

∂t
+∇× (µ−1∇×A) = 0 . (4d)

Are the hyperbolic equations dispersive?
Hint: The PDE is hyperbolic if substituting expression u = exp(i(ωt + kx)) into the

equation gives real solutions for the frequency ω. The phase velocity is c = ω/k. If the
phase velocity depends on the wave number k, the problem is said to be dispersive.

Solution

Case a:

(ρcωi+ λk2) exp(i(ωt+ kx)) = 0,

where i is the imaginary unit λ is the conductivity (usually denoted as k in this course,
but now it could cause confusion). 1 It is immediately clear that the angular frequency ω
has only imaginary solutions, thus the equation is parabolic.

Case b:

(−ρAω2 + EAk2) exp(i(ωt+ kx)) = 0 ⇒ ω =

√
E

ρ
k.

The phase velocity c is

c =
ω

k
=

√
E

ρ

and it does not depend on the wave number k, the equation is not dispersive.

Case c:

(−ρAω2 + EIk4) exp(i(ωt+ kx)) = 0 ⇒ ω =

√
EI

ρA
k2.

The phase velocity c is

c =
ω

k
=

√
EI

ρA
k.

Since the phase velocity depends on the wave number the problem is dispersive. In
dispersive system waves of di�erent wavelength travel with di�erent velocities.

1In the literature the thermal conductivity has usually symbols like λ, k or κ.
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The group velocity vR is de�ned as

vR =
dω

dk
= 2

√
EI

ρA
k = 2c.

Case d:

σ
∂A

∂t
+∇× (µ−1∇×A) = 0 .

If the vector potential A has only one nonzero component Az, the equation

σ
∂A

∂t
+∇× (µ−1∇×A) = 0 .

will reduce to (assuming also that the magnetic permeability µ is a constant)

σ
∂Az

∂t
− µ−1

(
∂2Az

∂x2
+
∂2Az

∂y2

)
= 0.

if the component Az depend only on e.g. coordinate x, then the equation is as in the case
(a). Thus the equation is parabolic.


