MEI-55200 solutions to exercise 1 1

Problem 1

For example, two problems where standard numerical schemes behave badly are in the
stationary one-dimensional case: (a) the diffusion-convection equation and (b) the reaction-
diffusion equation

d?u du
*k@ + pC’U% = 0, (].a)
d2
—kd—xz +bu=0, where b= 32kL2 (1b)

and [ is a dimensionless parameter. It is assumed here that the physical parameters
k,p,c,v,b are all constants in the domain Q = {z|z € (0,L)}. Solve the problem with
boundary conditions w(0) = up > 0,u(L) = 0. Draw the solution with different values of
the non-dimensional Péclet number P = pcvL/k, e.g. P = 1,10,100, and 32 = 1,10, 100.
What happens when P — oo and 8 — oo?

Solution for the case a: Let’s try the solution in the form u(x) = exp(rz). Substituting
it into the differential equation gives

(—kr? + pevr)exp(rz) =0 = r=0orr= p—ZU

Thus u(x) = Aexp(pcvz/L) + B. Using the boundary conditions gives

u0)=up = A+B=up
u(L)=0 = B=—-Aexp(pcvL/k) = —Aexp(P),
w0 exp(P)
A= ———— B=—-uyy——F=.
1 —exp(P)’ Hor - exp(P)
The solution is thus
u(e) = 7o py (exp(Pa/L) = exp(P))
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Solution for the case 2: Substituting the trial solution u(z) = exp(rx) into the differ-
ential equation gives

(—kr* +b)exp(rz) =0 = r=+/b/k=+p/L.
Thus u(z) = Aexp(Sz/L) + Bexp(—pz/L). Using the boundary conditions gives

u0)=uy = A+B=up
u(L)=0 = B=—-Aexp(20)

up B exp(203)

A=—""1 = —ug—
1 —exp(25)’ 0T exp(28)
The solution is thus
u(e) = T o (exp(Be/L) — exp(28) exp(—5i/L)).
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Problem 2

Adjoint operator D* for a differential operator D in a domain 2 is defined with functions

u,v € A as
/ vDud) = /(D*v)udQ.
Q Q

The operator D is self adjoint if D = D*. Investigate which ones of the following operators
are self adjoint:

2
D= —%, A = {ulu € Cs(0, L), u(0) = u(L) = 0} (22)
D——j;w;i, A = {ulu € Co(0, L), u(0) = u(L) = 0} (2b)

Notation Cy, (0, L) denotes a set of n-times continuously differentiable functions in an in-
terval (0, L), and k is a positive constant.

Solution for the case a: Integration by parts gives
L

L L L L L L
—/ v de = —| vu' + / Vi dr = / Vidde = | v'u— / V'u de = —/ v"u dx
0 0 0 0 0 0 0

for all functions u,v € A, hence D* = —% and D* = D, thus the operator D is self
adjoint.

Solution for the case b:

d? d
D_f@ij;%, A = {ulu € C2(0,L),u(0) = u(L) = 0}

Solution:

L

L L L
/ v(ku' —u")dx = (kvu — vu') — / (kv'u — v'u')dw = / (kv'u' — v'u)dx
0 0 0

0

I L
vu + / (—v"u — kv'u)dr = — / (V" + kv')u dx
0 0

D is not self adjoint.
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Problem 3

A differential operator D is positive in a domain 2 with functions belonging to the set A,
if
/ uDudQ) >0, VYue A
Q

Show, that the following operators are positive:

dkd

Dy = ke A = {u|u € C5(0,L),u(0) = u(L) = 0} (3a)
2 2
Dy = %EI%, A = {ulu € C4(0,L),u(0) =/(0) =u(L) =u'(L) =0}, (3b)

and k, EI > 0. Notation C,(0,L) denotes a set of n-times continuously differentiable
functions in an interval Q = {x|z € (0, L)}.

Solution:
Let’s investigate the integral I(u):

L

L L
uku' —I—/ k(u')dz = / k(u')dz > 0
0 0

L
Ir(u) = —/0 u(ku') dz = —

0

since if v’ = 0 then u = c=constant, and due to the boundary conditions u(0) = u(L) =0
then u would vanish identically.
In a similar way for the fourth order operator

L
I4(u):/ w(EIu")"dx
0

L

L
u(EIu”)’—/ o (ETu") dx
0

L

0

L
u'EIu"-l—/ EI(u")*dx
0

0

L
:/ EI(u")*dz > 0,
0

since if ©” = 0 then u = ax + b, and since u(0) = u(L) = 0 then u would vanish identically.
Notice that the material/sectional constants have to be positive.
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Problem 4

Investigate the type (parabolic/hyperbolic) of the following partial differential equations
(PDEs)

pCa — )\@ = 0, (4&)
0%u 0%u
A— — FA— = 4
P o Ox? 0 (4b)
9%u o*u
A
£L+VX@4va:0. (4d)

ot

Are the hyperbolic equations dispersive?

Hint: The PDE is hyperbolic if substituting expression u = exp(i(wt 4+ kx)) into the
equation gives real solutions for the frequency w. The phase velocity is ¢ = w/k. If the
phase velocity depends on the wave number k, the problem is said to be dispersive.

Solution

Case a:
(pewi + Mk?) exp(i(wt + kx)) = 0,

where ¢ is the imaginary unit A is the conductivity (usually denoted as k in this course,
but now it could cause confusion). ! It is immediately clear that the angular frequency w
has only imaginary solutions, thus the equation is parabolic.

Case b:

(—pAw2 + EAkQ) exp(i(wt+ kz)) =0 = w= Ek
p

The phase velocity c is

C= — = —_—

k p

and it does not depend on the wave number k, the equation is not dispersive.

Case c:

(—pAw? + ETk*) exp(i(wt+ kz)) =0 = w= — k%

w EI
= — =4/ —k.
“T% V pA

Since the phase velocity depends on the wave number the problem is dispersive. In
dispersive system waves of different wavelength travel with different velocities.

The phase velocity c is

'In the literature the thermal conductivity has usually symbols like A, k or x.
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The group velocity v is defined as

dw EI
BTk AT T

Case d:

a%+vX(/f1vXA):o.

If the vector potential A has only one nonzero component A,, the equation

0A
U§+VX (M_IVX A):O

will reduce to (assuming also that the magnetic permeability p is a constant)

0A, | (0%A, 09%A,
— + =0.
ot 0x? 0y?

g

if the component A, depend only on e.g. coordinate x, then the equation is as in the case
(a). Thus the equation is parabolic.



