Problem 1

For example, two problems where standard numerical schemes behave badly are in the stationary one-dimensional case: (a) the diffusion-convection equation and (b) the reactiondiffusion equation

$$
\begin{align*}
-k \frac{d^{2} u}{d x^{2}}+\rho c v \frac{d u}{d x} & =0 \tag{1a}\\
-k \frac{d^{2} u}{d x^{2}}+b u & =0, \quad \text { where } \quad b=\beta^{2} k L^{-2} \tag{1b}
\end{align*}
$$

and β is a dimensionless parameter. It is assumed here that the physical parameters k, ρ, c, v, b are all constants in the domain $\Omega=\{x \mid x \in(0, L)\}$. Solve the problem with boundary conditions $u(0)=u_{0}>0, u(L)=0$. Draw the solution with different values of the non-dimensional Péclet number $P=\rho c v L / k$, e.g. $P=1,10,100$, and $\beta^{2}=1,10,100$. What happens when $P \rightarrow \infty$ and $\beta \rightarrow \infty$?

Solution for the case a: Let's try the solution in the form $u(x)=\exp (r x)$. Substituting it into the differential equation gives

$$
\left(-k r^{2}+\rho c v r\right) \exp (r x)=0 \quad \Rightarrow \quad r=0 \text { or } r=\frac{\rho c v}{k}
$$

Thus $u(x)=A \exp (\rho c v x / L)+B$. Using the boundary conditions gives

$$
\begin{gathered}
u(0)=u_{0} \quad \Rightarrow \quad A+B=u_{0} \\
u(L)=0 \quad \Rightarrow \quad B=-A \exp (\rho c v L / k)=-A \exp (P) \\
A=\frac{u_{0}}{1-\exp (P)}, \quad B=-u_{0} \frac{\exp (P)}{1-\exp (P)}
\end{gathered}
$$

The solution is thus

$$
u(x)=\frac{u_{0}}{1-\exp (P)}(\exp (P x / L)-\exp (P))
$$

Solution for the case 2: Substituting the trial solution $u(x)=\exp (r x)$ into the differential equation gives

$$
\left(-k r^{2}+b\right) \exp (r x)=0 \Rightarrow r= \pm \sqrt{b / k}= \pm \beta / L
$$

Thus $u(x)=A \exp (\beta x / L)+B \exp (-\beta x / L)$. Using the boundary conditions gives

$$
\begin{gathered}
u(0)=u_{0} \quad \Rightarrow \quad A+B=u_{0} \\
u(L)=0 \quad \Rightarrow \quad B=-A \exp (2 \beta) \\
A=\frac{u_{0}}{1-\exp (2 \beta)}, \quad B=-u_{0} \frac{\exp (2 \beta)}{1-\exp (2 \beta)} .
\end{gathered}
$$

The solution is thus

$$
u(x)=\frac{u_{0}}{1-\exp (2 \beta)}(\exp (\beta x / L)-\exp (2 \beta) \exp (-\beta x / L))
$$

Problem 2

Adjoint operator D^{*} for a differential operator D in a domain Ω is defined with functions $u, v \in \mathcal{A}$ as

$$
\int_{\Omega} v D u d \Omega=\int_{\Omega}\left(D^{*} v\right) u d \Omega
$$

The operator D is self adjoint if $D=D^{*}$. Investigate which ones of the following operators are self adjoint:

$$
\begin{align*}
& D=-\frac{d^{2}}{d x^{2}}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\} \tag{2a}\\
& D=-\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\} \tag{2b}
\end{align*}
$$

Notation $C_{n}(0, L)$ denotes a set of n-times continuously differentiable functions in an interval $(0, L)$, and k is a positive constant.

Solution for the case a: Integration by parts gives

$$
-\int_{0}^{L} v u^{\prime \prime} d x=-\left.\right|_{0} ^{L} v u^{\prime}+\int_{0}^{L} v^{\prime} u^{\prime} d x=\int_{0}^{L} v^{\prime} u^{\prime} d x=\left.\right|_{0} ^{L} v^{\prime} u-\int_{0}^{L} v^{\prime \prime} u d x=-\int_{0}^{L} v^{\prime \prime} u d x
$$

for all functions $u, v \in \mathcal{A}$, hence $D^{*}=-\frac{d^{2}}{d x^{2}}$ and $D^{*}=D$, thus the operator D is self adjoint.

Solution for the case b:

$$
D=-\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\}
$$

Solution:

$$
\begin{aligned}
\int_{0}^{L} v\left(k u^{\prime}-u^{\prime \prime}\right) d x & =\left.\right|_{0} ^{L}\left(k v u-v u^{\prime}\right)-\int_{0}^{L}\left(k v^{\prime} u-v^{\prime} u^{\prime}\right) d x=\int_{0}^{L}\left(k v^{\prime} u^{\prime}-v^{\prime} u\right) d x \\
& =\left.\right|_{0} ^{L} v^{\prime} u+\int_{0}^{L}\left(-v^{\prime \prime} u-k v^{\prime} u\right) d x=-\int_{0}^{L}\left(v^{\prime \prime}+k v^{\prime}\right) u d x \\
& \Rightarrow D^{*}=-\frac{d^{2}}{d x^{2}}-k \frac{d}{d x} \neq D
\end{aligned}
$$

D is not self adjoint.

Problem 3

A differential operator D is positive in a domain Ω with functions belonging to the set \mathcal{A}, if

$$
\int_{\Omega} u D u d \Omega>0, \quad \forall u \in \mathcal{A} .
$$

Show, that the following operators are positive:

$$
\begin{align*}
& D_{2}=-\frac{d}{d x} k \frac{d}{d x}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\} \tag{3a}\\
& D_{4}=\frac{d^{2}}{d x^{2}} E I \frac{d^{2}}{d x^{2}}, \quad \mathcal{A}=\left\{u \mid u \in C_{4}(0, L), u(0)=u^{\prime}(0)=u(L)=u^{\prime}(L)=0\right\} \tag{3b}
\end{align*}
$$

and $k, E I>0$. Notation $C_{n}(0, L)$ denotes a set of n-times continuously differentiable functions in an interval $\Omega=\{x \mid x \in(0, L)\}$.

Solution:

Let's investigate the integral $I(u)$:

$$
I_{2}(u)=-\int_{0}^{L} u\left(k u^{\prime}\right)^{\prime} d x=-\left.\right|_{0} ^{L} u k u^{\prime}+\int_{0}^{L} k\left(u^{\prime}\right)^{2} d x=\int_{0}^{L} k\left(u^{\prime}\right)^{2} d x>0
$$

since if $u^{\prime} \equiv 0$ then $u=c=$ constant, and due to the boundary conditions $u(0)=u(L)=0$ then u would vanish identically.

In a similar way for the fourth order operator

$$
\begin{aligned}
I_{4}(u) & =\int_{0}^{L} u\left(E I u^{\prime \prime}\right)^{\prime \prime} d x \\
& =\left.\right|_{0} ^{L} u\left(E I u^{\prime \prime}\right)^{\prime}-\int_{0}^{L} u^{\prime}\left(E I u^{\prime \prime}\right)^{\prime} d x \\
& =-\left.\right|_{0} ^{L} u^{\prime} E I u^{\prime \prime}+\int_{0}^{L} E I\left(u^{\prime \prime}\right)^{2} d x \\
& =\int_{0}^{L} E I\left(u^{\prime \prime}\right)^{2} d x>0
\end{aligned}
$$

since if $u^{\prime \prime} \equiv 0$ then $u=a x+b$, and since $u(0)=u(L)=0$ then u would vanish identically.
Notice that the material/sectional constants have to be positive.

Problem 4

Investigate the type (parabolic/hyperbolic) of the following partial differential equations (PDEs)

$$
\begin{align*}
\rho c \frac{\partial u}{\partial t}-\lambda \frac{\partial^{2} u}{\partial x^{2}} & =0 \tag{4a}\\
\rho A \frac{\partial^{2} u}{\partial t^{2}}-E A \frac{\partial^{2} u}{\partial x^{2}} & =0 \tag{4b}\\
\rho A \frac{\partial^{2} u}{\partial t^{2}}+E I \frac{\partial^{4} u}{\partial x^{4}} & =0 \tag{4c}\\
\sigma \frac{\partial \boldsymbol{A}}{\partial t}+\nabla \times\left(\mu^{-1} \nabla \times \boldsymbol{A}\right) & =\boldsymbol{0} \tag{4~d}
\end{align*}
$$

Are the hyperbolic equations dispersive?
Hint: The PDE is hyperbolic if substituting expression $u=\exp (i(\omega t+k x))$ into the equation gives real solutions for the frequency ω. The phase velocity is $c=\omega / k$. If the phase velocity depends on the wave number k, the problem is said to be dispersive.

Solution

Case a:

$$
\left(\rho c \omega i+\lambda k^{2}\right) \exp (i(\omega t+k x))=0
$$

where i is the imaginary unit λ is the conductivity (usually denoted as k in this course, but now it could cause confusion). ${ }^{1}$ It is immediately clear that the angular frequency ω has only imaginary solutions, thus the equation is parabolic.

Case b:

$$
\left(-\rho A \omega^{2}+E A k^{2}\right) \exp (i(\omega t+k x))=0 \quad \Rightarrow \quad \omega=\sqrt{\frac{E}{\rho}} k
$$

The phase velocity c is

$$
c=\frac{\omega}{k}=\sqrt{\frac{E}{\rho}}
$$

and it does not depend on the wave number k, the equation is not dispersive.

Case c:

$$
\left(-\rho A \omega^{2}+E I k^{4}\right) \exp (i(\omega t+k x))=0 \quad \Rightarrow \quad \omega=\sqrt{\frac{E I}{\rho A}} k^{2}
$$

The phase velocity c is

$$
c=\frac{\omega}{k}=\sqrt{\frac{E I}{\rho A}} k .
$$

Since the phase velocity depends on the wave number the problem is dispersive. In dispersive system waves of different wavelength travel with different velocities.

[^0]The group velocity v_{R} is defined as

$$
v_{\mathrm{R}}=\frac{d \omega}{d k}=2 \sqrt{\frac{E I}{\rho A}} k=2 c
$$

Case d:

$$
\sigma \frac{\partial \boldsymbol{A}}{\partial t}+\nabla \times\left(\mu^{-1} \nabla \times \boldsymbol{A}\right)=\boldsymbol{0}
$$

If the vector potential \boldsymbol{A} has only one nonzero component A_{z}, the equation

$$
\sigma \frac{\partial \boldsymbol{A}}{\partial t}+\nabla \times\left(\mu^{-1} \nabla \times \boldsymbol{A}\right)=\boldsymbol{0}
$$

will reduce to (assuming also that the magnetic permeability μ is a constant)

$$
\sigma \frac{\partial A_{z}}{\partial t}-\mu^{-1}\left(\frac{\partial^{2} A_{z}}{\partial x^{2}}+\frac{\partial^{2} A_{z}}{\partial y^{2}}\right)=0
$$

if the component A_{z} depend only on e.g. coordinate x, then the equation is as in the case (a). Thus the equation is parabolic.

[^0]: ${ }^{1}$ In the literature the thermal conductivity has usually symbols like λ, k or κ.

