MEI-55200 Numerical methods for field problems

3. Exercise: FEM in 1-D

1. Solve the 1-D stationary heat transfer problem

$$
-\left(k u^{\prime}\right)^{\prime}=0
$$

of a wall $x \in(0, L)$ using FEM. Let's assume that the outside temperature at $x=0$ is $u_{0}>0$. What is the power needed at $x=L$ to maintain the inside temperature $2 u_{0}$? The conductivity of the wall is defined as

$$
k(x)= \begin{cases}34 k_{0}, & x \in\left(0, L_{1}\right)=\left(0, \frac{3}{14} L\right), \quad \text { concrete } \\ k_{0}, & x \in\left(L_{1}, L_{2}\right)=\left(\frac{3}{14} L, \frac{13}{14} L\right), \quad \text { glass wool } \\ 4 k_{0}, & x \in\left(L_{2}, L\right)=\left(\frac{13}{14} L, L\right), \quad \text { gypsum }\end{cases}
$$

What is the thermal transmittance (suom. lämmönläpäisykerroin), i.e. the U-value of the wall. The values are $k_{0}=0.05 \mathrm{~W} /(\mathrm{mK})$ and $L=0.28 \mathrm{~m}\left(L_{1}=6 \mathrm{~cm}, L_{2}=26 \mathrm{~cm}\right)$.
2. Solve by FEM the following stationary 1-dimensional diffusion-reaction equation

$$
-\left(k u^{\prime}\right)^{\prime}+c u=0, \quad u(0)=0, u(L)=\bar{u}_{L}
$$

where k, c are positive constants $c=\beta^{2} k L^{-2}$. Use three equal elements in the domain. Perform computations with the values $\beta=1$ and 100 .

Compute the problem also in the case where the part

$$
\int c w u d x
$$

in the conductivity matrix is lumped. A lumped matrix is obtained as

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
a_{11}+a_{12} & 0 \\
0 & a_{21}+a_{22}
\end{array}\right]
$$

What can be concluded?
3. Solve the 1-D stationary heat transfer problem

$$
-k u^{\prime \prime}=f_{0}
$$

with boundary conditions

$$
q(0)=-k u^{\prime}(0)=-q_{0} \quad \text { and } \quad q(L)=-k u^{\prime}(L)=\alpha q_{0}
$$

The conductivity k and heat source f_{0} are constants $\left(q_{0}=\frac{1}{2} f_{0} L\right)$ and α is a positive dimensionless constant. Solve the problem by using a single quadratic element. Does the problem have a solution for arbitrary values of $\alpha(\alpha \geq 0)$? Explain the situation physically.

Home exercise: Solve the fiber pullout problem

$$
-E_{\mathrm{f}} A_{\mathrm{f}} \frac{d^{2} u}{d x^{2}}+G_{\mathrm{m}} u=0, \quad u(0)=0, \quad N(L)=F
$$

where the normal force of the fiber is $N=E_{\mathrm{f}} A_{\mathrm{f}} u^{\prime}$, using the finite element method. The shear modulus of the matrix is assumed to be expressed in the form $G_{\mathrm{m}}=\beta^{2} E_{\mathrm{f}} A_{\mathrm{f}} / L^{2}$, which gives $\beta^{2}=G_{\mathrm{m}} L^{2} / E_{\mathrm{f}} A_{\mathrm{f}}$.

Design the mesh and choose the element yourself. Try to get the error in displacement less than 1%.

Draw the results, i.e the solution curves of the displacement u, the axial force N and the reaction force of the matrix $H=G_{\mathrm{m}} u$ in cases where $\beta=1$ and 10 .

To be returned at latest in the next exercise!

