MEI-55200 Numerical methods for field problems

1. Exercise: Mathematical preliminaries

1. For example, two problems where standard numerical schemes behave badly are in the stationary one-dimensional case: (a) the diffusion-convection equation and (b) the reaction-diffusion equation

$$
\begin{align*}
-k \frac{d^{2} u}{d x^{2}}+\rho c v \frac{d u}{d x} & =0 \tag{1a}\\
-k \frac{d^{2} u}{d x^{2}}+b u & =0, \quad \text { where } \quad b=\beta^{2} k L^{-2} \tag{1b}
\end{align*}
$$

and β is a dimensionless parameter. It is assumed here that the physical parameters k, ρ, c, v, b are all constants in the domain $\Omega=\{x \mid x \in(0, L)\}$. Solve the problem with boundary conditions $u(0)=u_{0}>0, u(L)=0$. Draw the solution with different values of the non-dimensional Péclet number $P=\rho c v L / k$, e.g. $P=1,10,100$, and $\beta^{2}=1,10,100$. What happens when $P \rightarrow \infty$ and $\beta \rightarrow \infty$?
2. Adjoint operator D^{*} for a differential operator D in a domain Ω is defined with functions $u, v \in \mathcal{A}$ as

$$
\int_{\Omega} v D u d \Omega=\int_{\Omega}\left(D^{*} v\right) u d \Omega
$$

The operator D is self adjoint if $D=D^{*}$. Investigate which ones of the following operators are self adjoint:

$$
\begin{align*}
& D=-\frac{d^{2}}{d x^{2}}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\} \tag{2a}\\
& D=-\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\} \tag{2b}
\end{align*}
$$

Notation $C_{n}(0, L)$ denotes a set of n-times continuously differentiable functions in an interval $(0, L)$, and k is a positive constant.
3. A differential operator D is positive in a domain Ω with functions belonging to the set \mathcal{A}, if

$$
\int_{\Omega} u D u d \Omega>0, \quad \forall u \in \mathcal{A} .
$$

Show, that the following operators are positive:

$$
\begin{align*}
& D_{2}=-\frac{d}{d x} k \frac{d}{d x}, \quad \mathcal{A}=\left\{u \mid u \in C_{2}(0, L), u(0)=u(L)=0\right\} \tag{3a}\\
& D_{4}=\frac{d^{2}}{d x^{2}} E I \frac{d^{2}}{d x^{2}}, \quad \mathcal{A}=\left\{u \mid u \in C_{4}(0, L), u(0)=u^{\prime}(0)=u(L)=u^{\prime}(L)=0\right\}, \tag{3~b}
\end{align*}
$$

and $k, E I>0$. Notation $C_{n}(0, L)$ denotes a set of n-times continuously differentiable functions in an interval $\Omega=\{x \mid x \in(0, L)\}$.
4. Investigate the type (parabolic/hyperbolic) of the following partial differential equations (PDEs)

$$
\begin{align*}
\rho c \frac{\partial u}{\partial t}-\lambda \frac{\partial^{2} u}{\partial x^{2}} & =0 \tag{4a}\\
\rho A \frac{\partial^{2} u}{\partial t^{2}}-E A \frac{\partial^{2} u}{\partial x^{2}} & =0 \tag{4b}\\
\rho A \frac{\partial^{2} u}{\partial t^{2}}+E I \frac{\partial^{4} u}{\partial x^{4}} & =0 \tag{4c}\\
\sigma \frac{\partial \boldsymbol{A}}{\partial t}+\nabla \times\left(\mu^{-1} \nabla \times \boldsymbol{A}\right) & =\boldsymbol{0} \tag{4~d}
\end{align*}
$$

In the case (d) you can assume that the vector potential \boldsymbol{A} has only one nonzero component A_{z} which depends on one spatial coordinate.

Are the hyperbolic equations dispersive?
Hint: The PDE is hyperbolic if substituting expression $u=\exp (i(\omega t+k x))$ into the equation gives real solutions for the frequency ω. The phase velocity is $c=\omega / k$. If the phase velocity depends on the wave number k, the problem is said to be dispersive.

Home exercise: Let's investigate a pull-out-test of a reinforcement fibre. It can be modelled by equation

$$
\begin{equation*}
-E_{\mathrm{f}} A_{\mathrm{f}} \frac{d^{2} u}{d x^{2}}+G_{\mathrm{m}} u=0, \quad u(0)=0, \quad N(L)=F \tag{5}
\end{equation*}
$$

where the normal force in the fibre is $N=E_{\mathrm{f}} A_{\mathrm{f}} u^{\prime}$. The shear modulus of the matrix is assumed to be expressed in the form $G_{\mathrm{m}}=\beta^{2} E_{\mathrm{f}} A_{\mathrm{f}} / L^{2}$, which gives $\beta^{2}=$ $G_{\mathrm{m}} L^{2} / E_{\mathrm{f}} A_{\mathrm{f}}$.
Solve the problem analytically and draw the results, i.e the solution curves of the displacement u, the axial force N and the reaction force in the matrix $H=G_{\mathrm{m}} u$ in cases where $\beta=1$ and 10 .

What is the value of β for a $L=10 \mathrm{~cm}$ long carbon fibre with a diameter 1 mm in an epoxy resin matrix?

To be returned at latest in the next exercise!

