

1. Consider above mass spring system. Determinate the equation of motion and calculate the eigenvalues and eigenvectors of the system. Draw the eigenvectors.

2. Determinate the stiffness matrix of the enclosed frame using three DOFs. The axial stiffness can be neglected. Exploit the lumped mass matrix approximation and determinate the non-zero eigenvalue and eigenvector.

Derive single DOF system by statically condensing the rotational DOFs leaving the lateral DOF.

$$
\begin{aligned}
& \sum F A \text { (1) } \quad m \ddot{q}_{1}+k q_{1}-k\left(q_{2}-q_{1}\right)-F_{1}=0 \\
& \sum F \uparrow \text { (2) } \quad m \dot{q}_{2}+k\left(q_{2}-q_{1}\right)+k q_{2}-F_{2}=0 \\
& M K \\
& {\left[\begin{array}{ll}
m & 0 \\
0 & m
\end{array}\right]\binom{\tilde{q}_{1}}{\dot{q}_{2}}+\left[\begin{array}{cc}
2 k & -k \\
-k & 2 k
\end{array}\right]\binom{q_{1}}{q_{2}}=\binom{\vec{i}_{1}}{F_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\omega^{2}\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\binom{d_{1}}{d_{2}}^{\frac{m}{m} \omega t}+\left[\begin{array}{cc}
2 k & -k \\
-k & 2 k
\end{array}\right]\binom{\phi_{1}}{\phi_{2}} \sin \omega t=\underline{0} \\
& \underbrace{\left(\left[\begin{array}{cc}
2 k & -k \\
-k & 2 k
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\right)\binom{b_{1}}{\phi_{2}} \sin \omega^{t}=\underline{0}}_{\operatorname{det}=0}
\end{aligned}
$$

El triviad natheish

$$
\operatorname{det}\left(K-\omega^{2} M\right)=0
$$

$$
\begin{aligned}
& \left|\begin{array}{ll}
2 k-\omega^{2} m & -k \\
-k & 2 k-\omega^{2} m
\end{array}\right| \\
& =\left(2 k-\omega^{2} m\right)\left(2 k-\omega^{2} m\right)-k^{2}=0 \\
& m^{2} \omega^{4}-4 m k \omega^{2}+\underbrace{4 k^{2}-k^{2}}_{3 k^{2}}=0 \\
& \lambda=\omega^{2} \\
& m^{2} x^{2}-4 m k x+3 k^{2}=0 \\
& \lambda_{122}=\frac{+4 m t \pm \sqrt{16 m^{2} l^{2}-12 m^{2} k^{2}}}{2 m^{2}} \\
& =\frac{t 4 m k \pm 2 m k}{2 m}=\frac{2 k \pm k}{m} \\
& l_{1}=\mathrm{k} / \mathrm{m} \quad l_{2}=3 \mathrm{k} / \mathrm{m} \\
& {[k]=N / m=E g b_{3}^{2}} \\
& {[m]=k g} \\
& \omega_{1}=\sqrt{4 / m} \quad \omega_{2}=\sqrt{3 L / n} \\
& {\left[\omega_{1}\right]=\sqrt{\mathrm{kg} / \mathrm{s}^{2} / \mathrm{sg}}} \\
& \text { =孜 } \\
& \omega=\omega_{1}=\sqrt{k / m} \quad \text { MATLLAB } \quad[\phi, A]=\operatorname{eig}(k, H) \\
& \Rightarrow\left[\begin{array}{ll}
2 k-k & -k \\
-k & 2 k-k
\end{array}\right]\binom{0}{D_{2}}=\binom{0}{0} \\
& {\left[\begin{array}{cc}
k & -k \\
-k & k
\end{array}\right]\binom{\phi_{1}}{\phi_{2}}=\binom{6}{0} \quad \text { val } \phi_{1}=1 \Rightarrow \phi_{2}=1} \\
& \theta^{\prime}=\binom{1}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=\omega_{2}=\sqrt{3 k / m} \\
& {\left[\begin{array}{cc}
2 k-3 k & -k \\
-k & 2 k-3 k
\end{array}\right]\binom{\phi_{1}}{\phi_{2}}=\binom{0}{0} \text { vel } \phi_{1}=1} \\
& {\left[\begin{array}{cc}
-k & -k \\
-k & -k
\end{array}\right]\binom{\phi_{1}}{\phi_{2}}=\binom{0}{0}}
\end{aligned}
$$

vol $\phi_{1}=1 \Rightarrow d_{2}=-1$

$$
\phi_{1}^{2}=(-1)
$$

omnaispany

$$
\begin{aligned}
& \omega_{1}=\sqrt{k / m} \quad \phi^{\prime}=\binom{1}{1} \\
& \omega_{2}=\sqrt{3 k / m} \quad \sigma^{2}=\binom{1}{-1} \\
& \varnothing=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad \Omega=\left[\begin{array}{cc}
k / m & 0 \\
0 & 3 k / m
\end{array}\right]
\end{aligned}
$$

Q_{1}^{1} is ϕ^{2} voideon skakta silen ath

$$
\begin{aligned}
& \varnothing^{i T} M \phi^{i}=1 \\
& \phi^{\prime} \mu \phi^{1}=2 m \\
& \hat{\phi}^{\prime}=\frac{1}{\sqrt{2 m}} \phi^{i}=\left(\begin{array}{l}
1 / \sqrt{2 m}
\end{array}\right) \quad \phi^{2 T} M \phi^{2}=2 m \\
& \hat{\phi}^{2}=\binom{1 / \sqrt{2 m}}{-1 / \sqrt{2 m}}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi=\frac{1}{\sqrt{2 m}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
& q=\phi \underline{\eta} \quad \Rightarrow \quad \ddot{q}=\phi \dot{q} \\
& \phi^{\top} \mid \quad M \ddot{q}+k \underline{q}=\underline{F} \\
& \phi^{T} M \varnothing \ddot{B}^{\top}+\phi^{T} K \varnothing \underline{Z}=\varnothing^{\top} E \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{\ddot{q}_{1}}{\ddot{z}_{2}}+\left[\begin{array}{cc}
k / m & 0 \\
0 & 3 k m
\end{array}\right]\binom{r_{1}}{r_{2}}=\theta^{-t} \underline{F}} \\
& \frac{1}{\sqrt{2 m}^{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& {\left[\begin{array}{cc}
m & m \\
m & -m
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 m & 0 \\
0 & 2 n
\end{array}\right]}
\end{aligned}
$$

(3)

EB-palkki

EB-palkielementin matriisit

$$
k^{e}=\frac{E 1}{L^{3}}\left[\begin{array}{ccccc}
12 & 6 L & -12 & 6 L & 0 \\
& 4 L^{2} & -6 L & 2 L^{2} & 0 \\
& 12 & -6 L & 0 \\
\text { synm. } & & 4 L^{2} & 0 \\
& & & 0
\end{array}\right]
$$

$$
k^{7}=\frac{E_{1}}{L^{3}}\left[\begin{array}{cc}
12 & 6 L \\
6 L & 4 L^{2}
\end{array}\right]_{1}
$$

$$
\left(a_{2}^{1} \quad 0^{3} \quad k^{2}=\frac{E 1}{L^{3}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 4 L^{2} & 2 L^{2} \\
0 & 2 L^{2} & 4 L^{2}
\end{array}\right]\right.
$$

$$
k^{3}=\frac{E 1}{L^{3}}\left[\begin{array}{cc}
1 & 3 \\
12 & 6 L \\
6 L & 4 L^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& K=\frac{E 1}{L^{3}}\left[\begin{array}{ccc}
12+0+12 & 6 L+0 & 6 L \\
6 L+0 & 4 L^{2}+4 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 4 L^{2}+4 L^{2}
\end{array}\right]=\frac{E 1}{L^{3}}\left[\begin{array}{ccc}
24 & 6 L & 6 L \\
6 L & 8 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 8 L^{2}
\end{array}\right] \\
& {[M]=\rho A L\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ; \quad[K]=\frac{E 1}{L^{3}}\left[\begin{array}{ccc}
24 & 6 L & 6 L \\
6 L & 8 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 8 L^{2}
\end{array}\right]} \\
& \operatorname{det}([K]-\lambda[M])=0 \quad \lambda=\frac{G A L^{4}}{E l} \omega^{2} \\
& \left|\begin{array}{ccc}
24-2 \lambda & 6 L & 6 L \\
6 L & 8 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 8 L^{2}
\end{array}\right|=0 \\
& (24-2 \lambda) 60 L^{4}-6 L \cdot 36 L^{3}+6 L\left(-36 L^{3}\right)=0 \\
& 1440 \not \mu^{4}-120 y^{4} \lambda-2164^{4}-216 L^{4}=0 \\
& \lambda=8,4 \\
& \Rightarrow \omega=\sqrt{8,4} \sqrt{\frac{E 1}{\mathcal{A L}}} \approx 2,898
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
8 L^{2} & 2 L^{2} \\
2 L^{2} & 8 L^{2}
\end{array}\right]\left[\begin{array}{l}
\phi_{2} \\
\phi_{3}
\end{array}\right]=\left[\begin{array}{l}
-6 L \\
-6 L
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
8 & 2 \\
2 & 8
\end{array}\right]\left[\begin{array}{l}
\phi_{2} \\
\phi_{3}
\end{array}\right]=\left[\begin{array}{l}
-6 / 2 \\
-6 / L
\end{array}\right]} \\
& {\left[\begin{array}{l}
\phi_{2} \\
\phi_{3}
\end{array}\right]=\left[\begin{array}{ll}
8 & 2 \\
2 & 8
\end{array}\right]^{-1}\left[\begin{array}{l}
-6 / L \\
-6 / L
\end{array}\right]=\frac{1}{\frac{64-4}{60}}\left[\begin{array}{cc}
8 & -2 \\
-2 & 8
\end{array}\right]\left[\begin{array}{l}
-6 / L \\
-6 / L
\end{array}\right]} \\
& {\left[\begin{array}{l}
\phi_{2} \\
\phi_{3}
\end{array}\right]=\frac{1}{60}\left[\begin{array}{l}
-36 / L \\
-36 / L
\end{array}\right]=-\frac{3}{5 L}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-0,6 / L \\
-0,6 / L
\end{array}\right]} \\
& \underline{\phi}=\left[\begin{array}{l}
1 \\
-0,6 / L \\
-0,6 / L
\end{array}\right]
\end{aligned}
$$

$$
\hat{\phi}_{1}=\frac{1}{\sqrt{\Phi^{\top} M \Phi^{T}}} \underline{\phi}=\frac{1}{\sqrt{2 \rho A L}}\left[\begin{array}{c}
1 \\
-0,6 / L \\
-0,6 / L
\end{array}\right] \quad \rho^{A L}=18 \mathrm{Kg}
$$

Static condeneation

$$
\begin{aligned}
& K=\frac{E I}{L^{3}}\left[\begin{array}{c|cc}
24 & 6 L & 6 L \\
6 L & 8 L^{2} & 2 L^{2} \\
6 \angle & 2 L^{2} & 8 L^{2}
\end{array}\right]_{3}^{1} 2=\left[\begin{array}{l|l}
K_{11} & K_{12} \\
\hline k_{21} & k_{22}
\end{array}\right] \frac{E F}{L^{3}} \\
& K^{*}=K_{11}-K_{12} K_{22}^{-1} K_{21} \\
& K_{22}^{-1}=\frac{1}{8 \cdot 8 L^{4}-2 \cdot 2 L^{4}}\left[\begin{array}{cc}
8 L^{2} & -2 L^{2} \\
-2 L^{2} & 8 L^{2}
\end{array}\right]=\frac{1}{60 L^{2}}\left[\begin{array}{cc}
8 L^{2} & -2 L^{2} \\
-2 L^{2} & 8 L^{2}
\end{array}\right] \\
& K_{12} \cdot K_{22}^{-1} K_{21}=\frac{E T}{L^{3}}\left[\begin{array}{ll}
6 L & L L
\end{array}\right] \frac{1}{60 L^{4}}\left[\begin{array}{cc}
8 L^{2} & -2 L^{2} \\
-2^{2} & 8 L^{2}
\end{array}\right]\left[\begin{array}{l}
6 L \\
6 L
\end{array}\right] \\
& \left.=\frac{E F}{6 O L^{7} L 6 L 6 L}\left[\begin{array}{ll}
6
\end{array}\right] \begin{array}{l}
36 L^{3} \\
36 L^{3}
\end{array}\right]=\frac{432 E T}{60 L^{3}} \\
& =7,2 E F / L^{3} \\
& L^{*}=\frac{E I}{L^{3}}(24-7,2)=16,8 \frac{E I}{\angle 3} \\
& M^{*}=25 A L \\
& \left(k^{2}-\omega^{2} M^{\phi}\right) \phi=0 \Leftrightarrow\left(16,8 \frac{E T}{L^{3}}-\omega^{2} \cdot 2 \rho A L\right) \phi=0 \\
& \omega^{2}=8,4 \frac{E I}{\rho A L^{4}} \\
& \omega=\sqrt{8,4} \cdot \sqrt{\frac{E T}{S A L^{4}}}=2,898 \sqrt{\frac{E T}{S A L^{4}}}
\end{aligned}
$$

