

2 Kuvan vaunuun kohdistuu askelheräte

$$
F(t)=F_{0} s(t)
$$

Laske aika, jolloin vaunu ensimmäisen kerran saavuttaa ääriasemansa sekä laske vasteen maksimiarvo. Systeemi on alkuhetkellä levossa origossa. $\zeta=0,10$
Vast: $u_{\text {max }} \approx 1,729 F_{0} / k$

The load is a step function. Determinate time when wagon gets its first extreme position and compute the response.

Kuvan ulokepalkilla on transienttikuormitus

$$
F(t)=F_{0} \mathrm{f}(t)
$$

missä $\mathrm{f}(t)$ on oheisen kuvan mukainen ja $t_{1}=\frac{1}{4} T_{1}, T_{1}$ on alin ominaisvärähdysaika.
Määritä normaalimuotomenetelmällä palkin ulokepään siirtymävaste $v(t)$ ja piirrä käyrä aikavälillä $0 \leq t \leq 2 t_{1}$. Palkki on aluksi levossa.

$$
\begin{aligned}
& {[M]=\frac{S A L}{420}\left[\begin{array}{cc}
156 & -22 L \\
-22 L & 4 L^{2}
\end{array}\right] \Rightarrow\{\phi\}_{1}^{\top}[M]\{\phi\}_{7}=0,24520 \rho A L} \\
& \Rightarrow \quad\{\phi\}_{2}^{\top}[M]\{\phi\}_{2}=0,12621 \rho \mathrm{AL} \\
& \{\bar{\phi}\}_{1}=\frac{1}{\sqrt{0,24520 \rho A L}}\{\phi\}_{1}=\left[\begin{array}{l}
2,0195 \\
2,7817 / L
\end{array}\right] \frac{1}{\sqrt{\rho A L}} \\
& \begin{array}{l}
\left\{\bar{\phi} \xi_{2}=\frac{1}{\sqrt{0,12621 \rho A L}}\{\phi\}_{2}=\left[\begin{array}{l}
2,814 \\
21,45
\end{array}\right.\right. \\
{[\bar{\Phi}]=\frac{1}{\sqrt{S A L}}\left[\begin{array}{ll}
2,0195 & 2,81484 \\
2,7817 / L & 21,4542 / L
\end{array}\right]}
\end{array} \\
& \{\hat{R}(t)\}=\left[\begin{array}{c}
F(t) \\
0
\end{array}\right] \Rightarrow\{Q\}=[\bar{\Phi}]^{\top}\{\hat{R}\}- \\
& \Rightarrow\{Q\}=[\bar{\Phi}]^{\top}\{\hat{R}\}=\frac{F_{0} f(t)}{\sqrt{\rho A L}}\left[\begin{array}{ll}
2,0195 & 2,81484 \\
2,7817 / L & 21,4542 / L
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2,0195 \\
2,81484
\end{array}\right] \frac{F_{0} f(t)}{\sqrt{\rho A L}}
\end{aligned}
$$

Pääkoordinaatisto: $\ddot{\eta}_{i}+\omega_{i}^{2} \eta_{i}=Q_{i}(t) \quad, i=1,2$

$$
\begin{aligned}
& \begin{array}{rl}
h_{i}(t-\tau)=\frac{1}{\omega_{i}} \sin \omega_{i}(t-\tau) \\
0 \leq t \leq t_{1} & f(\tau)=\frac{\tau}{t_{1}} \\
& f(t)=\frac{Q_{i}}{\sqrt{\rho A L}} \int_{0}^{t} \frac{\tau}{t_{1}} \frac{1}{\omega_{i}} \sin \omega_{i}(t-\tau) d \tau \quad u=\tau, u^{\prime}=1 \\
\eta_{i}(t) & Q_{i}^{\prime}=\sin , v=+\frac{1}{\omega_{i}} \cos \\
t_{1} \omega_{i}^{2} \sqrt{\Omega A L} & 1 \\
0 & \left.\tau \cos \omega_{i}(t-\tau)-\int_{0}^{t} \cos \omega_{i}(t-\tau) d \tau\right]
\end{array}
\end{aligned}
$$

(j$j a+k u u)$

$$
\begin{aligned}
& \text { (jatkoa) } \\
& \eta_{i}(t)=\frac{Q_{i}}{t_{1} \omega_{i}^{2} \sqrt{\rho A L}}\left[t+\left.\frac{1}{\omega_{i}}\right|_{0} ^{t} \sin \omega_{i}(t-\tau)\right] \\
& =\frac{Q_{i}}{t_{1} \omega_{i}^{3} \sqrt{\rho A L}}\left[t \omega_{i}-\sin \omega_{i} t\right] \\
& \{\hat{u}\}=[\bar{\Phi}]\{\eta\}=\frac{1}{\sqrt{\rho A L}}\left[\begin{array}{ll}
2,0195 & 2,81484 \\
2,7817 / L & 21,4542 / L
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right] \\
& \Rightarrow\{\hat{u}\}=\frac{1}{\sqrt{\rho A L}}\left[\begin{array}{l}
2,0195 \eta_{1}+2,81484 \eta_{2} \\
2,7817 \eta_{1} / L+21,4542 \eta_{2} / L
\end{array}\right] \\
& t_{1}=\frac{T_{1}}{4}=\frac{1}{4} \frac{2 \pi}{\omega_{1}}=0,4446 \sqrt{\frac{\rho A L^{4}}{E I}} \\
& \Rightarrow \quad \eta_{1}(t) \approx 0,10303 \frac{F_{0} L^{3}}{E L} \sqrt{\rho A L}\left[t \omega_{1}-\sin \omega_{1} t\right] \\
& \eta_{2}(t)=0,00015014 \frac{F_{0} L^{3}}{E I} \sqrt{\rho A L}\left[t \omega_{2}-\sin \omega_{2} t\right] \\
& \underline{t \geq t_{1}}: \quad f(\tau) \equiv 1 \\
& \eta_{i}(t)=\frac{Q_{i}}{\sqrt{\rho A L}}\left[\int_{0}^{t_{1}} \frac{\tau}{t_{1}} \cdot \frac{1}{\omega_{i}} \sin \omega_{i}(t-\tau) d \tau+\int_{t_{1}}^{t} \frac{1}{\omega_{i^{\prime}}} \sin \omega_{i^{\prime}}(t-\tau) d \tau\right] \\
& =\frac{Q_{i}}{\omega_{i}^{2} t_{1} \sqrt{\rho A L}}\left[1_{1}^{t_{1}} \tau \cos \omega_{i}(t-\tau)-\int_{0}^{t_{1}} \cos \omega_{i}(t-\tau) d \tau+t_{1} / \cos \omega_{i}(t-\tau)\right] \\
& =\frac{Q_{i}}{t_{1} \omega_{i}^{3} \sqrt{\rho A L}}\left[t_{1} \omega_{i} \cos \left(t-t_{1}\right)+\int_{0}^{t_{1}} \sin \omega_{i}(t-\tau)+t_{1} \omega_{i}\left(1-\cos \omega_{i}\left(t-t_{1}\right)\right)\right] \\
& =\frac{Q_{i}}{t_{1} \omega_{i}^{3} \sqrt{\rho A L}}\left[t_{1} \omega_{i}+\sin \omega_{i}\left(t-t_{1}\right)-\sin \omega_{i} t\right] \\
& \Rightarrow \eta_{1}(t) \approx 0,10303 \frac{F_{0} L^{3}}{E I} \sqrt{\rho A L}\left[t_{1} \omega_{1}+\sin \omega_{1}\left(t-t_{1}\right)-\sin \omega_{1} t\right] \\
& \eta_{2}(t) \approx 0,00015014 \frac{F_{0} L^{3}}{E I} \sqrt{\rho A L}\left[t_{1} \omega_{2}+\sin \omega_{2}\left(t-t_{1}\right)-\sin \omega_{2} t\right]
\end{aligned}
$$

(3)

asketheräte $F(t)=F_{0} s(t)$

$$
\xi=0,10
$$

vaimennetun värähtelijän askelvaste

$$
\begin{aligned}
& x(t)=x_{s t}\left[1-e^{-\xi \omega t}\left(\frac{\xi}{\sqrt{1-\xi^{2}}} \sin \left(\omega_{d} t\right)+\cos \left(\omega_{d} t\right)\right)\right], t \geqslant 0 \\
& \omega_{d}=\omega \sqrt{1-\xi^{2}}, \quad \omega=\sqrt{\frac{k}{m}}, \quad x_{s t}=\frac{F_{0}}{k}
\end{aligned}
$$

Vasteen maksimiano saadaan ajanhetkella $t_{p \text {, }}$ jolloin $\dot{x}\left(t_{p}\right)=0$

$$
\begin{aligned}
& \dot{x}(t)=x_{s t}\left[-e^{-\xi \omega t} \cdot(-\xi \omega)\left(\frac{\xi}{\sqrt{1-\xi^{2}}} \sin \left(\omega_{d} t\right)+\cos \left(\omega_{d} t\right)\right)+\right. \\
& \left.-e^{-\xi \omega t}\left(\frac{\xi}{\sqrt{1-\xi^{2}}} \cos \left(\omega_{d} t\right) \cdot \omega_{d}-\sin \left(\omega_{d} t\right) \cdot \omega_{d}\right)\right] \\
& \dot{x}\left(t_{p}\right)=x_{s}\left[\xi \omega \left(\frac{\xi}{\sqrt{1-\xi^{2}}} \sin \left(\omega_{d} t_{p}\right)+\cos \left(\omega_{d} t_{p}\right)+\right.\right. \\
& \left.-\left(\frac{\xi \omega_{d}}{\sqrt{1-\xi^{2}}} \cos \left(\omega_{d} t_{p}\right)+\omega_{d} \sin \left(\omega_{d} t_{p}\right)\right)\right]^{-\xi \omega t}=0 \\
& \Rightarrow \quad\left\{\omega\left(\frac{\xi}{\sqrt{1-\xi^{2}}} \sin \left(\omega_{d} t_{p}\right)+\cos \left(\omega_{d} t_{p}\right)\right)-\xi \omega \cos \left(\omega_{d} t_{p}\right)+\omega_{d} \sin \left(\omega_{d} t_{p}\right)=0\right. \\
& \Rightarrow\left(\frac{\xi^{2} \omega}{\sqrt{1-\xi^{2}}}+\omega_{d}\right) \sin \left(\omega_{d} t_{p}\right)=0 \\
& \Rightarrow \frac{\xi^{2}+1-\xi^{2}}{\sqrt{1-\xi^{2}}} \omega \sin \left(\omega_{d} t_{p}\right)=0 \Rightarrow \sin \left(\omega_{d} t_{p}\right)=0 \Rightarrow \omega_{d} t_{p}=\pi \\
& \Rightarrow \quad t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\omega \sqrt{1-\xi^{2}}} \\
& x_{\text {max }}=x\left(t_{p}\right)=x_{s t}\left[1-e^{-j \omega t_{p}}(0+(-1))\right] \\
& =x_{s t}\left[1+e^{-\xi \pi / \sqrt{1-\xi^{2}}}\right] \approx 1,729 \frac{F_{0}}{k}
\end{aligned}
$$

