Tampere University of Technology

EDE-21100 Introduction to Finite Element Method. Exercise 3 Autumn 2013.

1. Solve the deflection curve v(x) exactly for the beam shown

$$EI_z v_{,xxxx} = q_0$$

2. A displacement field

 $u(x, y) = 0.1 + 0.2 \cdot x + 0.3 \cdot x^{3} + 0.2 \cdot x y^{2}$

$$v(x, y) = 0.25 \cdot x y + 0.2 \cdot x^2$$

is imposed on the square element shown in Fig. 2.

- (a) Write down the expressions for \mathcal{E}_x , \mathcal{E}_y and γ_{xy}
- (b) Plot contours of for ε_x , ε_y and γ_{xy} using some computer software
- (c) Find where ε_x is a maximum within the square
- (d) Sketch the element deformed shape
- 3. Solve differential equation below exactly and by using the Galerkin's method. Choose suitable trial function from second degree polynomials selecting both boundary conditions as essential.

$$u_{,xx} = x$$
 $x \in [0,1]$
 $u(0) = 0$
 $u(1) = 1$

4. Compute the displacement u(L) and the stress $\sigma(0)$ of the rod a) exactly, b) Galerkin's method with kinematically admissible ($\tilde{u}(0) = 0$) trial function $\tilde{u}(x) = Q_1(x/L) + Q_2(x/L)^2$ and c) Galerkin's method with trial function $\tilde{u}(x) = Q_1(x/L)$. The body force $f_x = \rho g$, Young's modulus E = 200 GPa, steel density $\rho = 7850$ kg/m³, g = 9.81m/s², L = 2000 m.