T1 Nostimen ANSYS-malli

Päätetään laskea millimetreillä, koska kyseessä ei ole dynamiikan tehtävä. Käynnistetään ANSYS ja määritetään ensin nostopuomin solmujen pisteet:

К,,О,	-1300 !* Pylv	ään kiinnitys
К,,О,	-1000 !* Sylir	nterin kiinnitys pylväässä
К,,О,	0 !* Origo	
К,,766	5.0444431,	642.7876097 !* Sylinterin kiinnitys
K,,229	98.133329,	1928.362829
K,,383	30.222216,	3213.938048 !* Puomin pää

ja lisätään sitten elementtityypit: BEAM188 ja LINK180. Palkille valitaan vielä kohdasta Options: Element behaviour KeyOpt3=2. Sauvaelementille asetetaan arvot kohdasta Real Constants. Materiaalin kimmokerroin asetaan valikosta Material Models.

Palkkien poikkileikkaukset määritetään valikosta Sections->Beam->Common Sections alla olevaa taulukkoa käyttäen (tai Googlettamalla HEA palkit). Laita palkille HEA200 ID 2 painettuasi Apply.

Taulukko.	HEA-pall	kkien mitat			
Nr	Туре	h	b	S	t
1	HE 100 A	96	100	5.0	8.0
2	HE 120 A	114	120	5.0	8.0
3	HE 140 A	133	140	5.5	8.5
4	HE 160 A	152	160	6.0	9.0
5	HE 180 A	171	180	6.0	9.5
6	HE 200 A	190	200	6.5	10.0
7	HE 220 A	210	220	7.0	11.0
8	HE 240 A	230	240	7.5	12.0
9	HE 260 A	250	260	7.5	12.5
10	HE 280 A	270	300	8.0	13.0
11	HE 300 A	290	300	8.5	14.0
12	HE 320 A	310	300	9.0	15.5
13	HE 340 A	330	300	9.5	16.5
14	HE 360 A	350	300	10.0	17.5
15	HE 400 A	390	300	11.0	19.0
16	HE 450 A	440	300	11.5	21.0
17	HE 500 A	490	300	12.0	23.0
18	HE 550 A	540	300	12.5	24.0
19	HE 600 A	590	300	13.0	25.0

Tehdään sitten nostopuomin pisteet ja kolme viivaa. Tehdään lisäksi suuntapiste, joka määrää palkin orientaation kopioimalla KeyPoint1 500 mm ylöspäin ja

h

s

t-

pylvään verkotusta varten suuntapiste: (esim: 0,-500,-500). Verkotetaan sitten nostopuomi vaikkapa MeshToolia käyttäen. Valitse ylin Set (Lines) ja valitse sitten kolme viivaa ja aseta kuvan mukaiset valinnat OK ja valitse hiirellä puomin suuntapiste, joka juuri tehtiin. Valitse vielä Size Controls: Lines Set ja aseta kolmelle viivalle elementtien lukumääräksi 1 kpl. Paina vielä Mesh ja verkota viivat.

[LATT] Assign Attributes to Picked Lines	
MAT Material number	1 💌
REAL Real constant set number	1 💌
TYPE Element type number	2 BEAM188
SECT Element section	1 HEA140 💌
Pick Orientation Keypoint(s)	Ves

MeshTool				
Element Attri	ibutes:			
Lines] Set		
C Smart Siz				
i Sindit Siz	26	Þ		
Fine	6	Coarse		
Size Controls				
Global	Set	Clear		
Areas	Set	Clear		
Lines	Set	Clear		
	Сору	Flip		
Layer	Set	Clear		
Keypts	Set	Clear		
Mesh:	Lines	-		
Shape: @	Badio1	C HeyAvledge		
Free C Mapped C Sweep				
-				
3	or 4 sided	*		
MeshClear				
Refine at: Elements				
	Rei	line		
Close		Help		

Tehdään pylvään viivat ja elementit (1 per viiva) vastaavasti asettamalla

Element attributes poikkileikkaus HEA200 ja käyttäen pylvään suuntapistettä (0,-500,-500).

Koska pylvään ja nostopuomin välissä on kiertonivel, niin mallinnetaan nivel ENDRELEASE komennolla (Main Menu->Preprocessor->Loads->Load Step Opts->Other->End Releases->On Selected set), mutta sitä käytettäessä pitää ensin asettaa ko. KeyPoint, johon nivel tulee, valituksi. Ylämenu Select->Entities->Keypoints->OK ja valitse piste, jossa nivel tulee olemaan. Select komentoa käytettäessä pitää muistaa palauttaa valinnat ENDRELEASE (jolla vapautat nyt rotaation z-akselin ympäri elementtien välillä) komennon jälkeen: Select->Entities->Keypoints->Sele all. (Tuon kaiken voi myös korvata: End Releases->On Picked Node)

Vielä lisätään (Elem Attributes: LINK180) nostosylinteriä kuvaava sauvaelementti ja lisätään sauvaelementti.

Malli alkaa jo kohta olla valmis kunhan lisätään pylvään alapää täysin kiinni ja lisätään nostopuomin päähän pistevoima vaikkapa 1000 N alaspäin.

Ratkaistaan tehtävä varoituksista (näet varoitukset toisesta ANSYS-ikkunasta) välittämättä ja katsotaan nostimen siirtymä. Jos kaikki näyttää hyvältä niin siirrytään General Postproc kohtaan Element table ja lisätään sinne tuloksia SMIS numerot 1,14,5,18,2,15,3,16 (katso Help Beam 188).

Label Rem Comp Time Stamp Status NL SMIS 1 Time= 10000 (Current) NZ SMIS 14 Times 10000 (Current) QIZ SMIS 5 Time= 10000 (Current) QIZ SMIS 18 Times 10000 (Current) W1 SMIS 2 Time= 10000 (Current) W1 SMIS 3 Times 10000 (Current) M2 SMIS 3 Time= 10000 (Current) M21 SMIS 16 Time= 1.0000 (Current) M22 SMIS 16 Time= 1.0000 (Current)	Currently L	efined Data a	nd Status:			
NL SMIS 1 Time= 10000 (Current) N2 SMIS 14 Time= 10000 (Current) Q1Z SMIS 5 Time= 10000 (Current) Q2Z SMIS 18 Time= 10000 (Current) W1 SMIS 2 Time= 10000 (Current) W2 SMIS 15 Time= 10000 (Current) W21 SMIS 3 Time= 10000 (Current) W22 SMIS 16 Time= 10000 (Current)	Label	Item	Comp	Time Stamp	Status	
N2 SMIS 1.4 Time= 1.0000 (Current) OIZ SMIS 5 Time= 1.0000 (Current) Q2Z SMIS 1.8 Time= 1.0000 (Current) WT1 SMIS 2 Time= 1.0000 (Current) WZ2 SMIS 3 Time= 1.0000 (Current) MZ1 SMIS 3 Time= 1.0000 (Current) MZ2 SMIS 1.6 Time= 1.0000 (Current)	N1	SMIS	1	Time= 1.0000	(Current)	
QIZ SMIS 5 Time= 1.0000 (Current) QZZ SMIS 18 Time= 1.0000 (Current) W1 SMIS 2 Time= 1.0000 (Current) W12 SMIS 15 Time= 1.0000 (Current) W12 SMIS 3 Time= 1.0000 (Current) M21 SMIS 16 Time= 1.0000 (Current)	N2	SMIS	14	Time= 1.0000	(Current)	
Q2Z SMIS 18 Time= 1.0000 (Current) MrI SMIS 2 Time= 1.0000 (Current) MrI2 SMIS 15 Time= 1.0000 (Current) MrI2 SMIS 3 Time= 1.0000 (Current) MZI SMIS 16 Time= 1.0000 (Current)	Q1Z	SMIS	5	Time= 1.0000	(Current)	
MM1 SMIS 2 Times 1.0000 (Current) MV2 SMIS 15 Times 1.0000 (Current) MZ1 SMIS 3 Times 1.0000 (Current) MZ2 SMIS 16 Times 1.0000 (Current)	Q2Z	SMIS	18	Time= 1.0000	(Current)	
MY2 SMIS 15 Time= 10000 (Current) MZI SMIS 3 Time= 10000 (Current) MZZ SMIS 16 Time= 1.0000 (Current)	MY1	SMIS	2	Time= 1,0000	(Current)	
MZI SMIS 3 Time= 1.0000 (Current) MZZ SMIS 16 Time= 1.0000 (Current)	MYZ	SMIS	15	Time= 1.0000	(Current)	
MZ2 SMIS 16 Time= 1.0000 (Current)		SMIS	3	Time= 1.0000	(Current)	
	MZ2	SMIS	16	Time= 1.0000	(Current)	

ja käydään sitten katselemassa tuloksia.

Elementti- ja solmunumerointi

Seuraavassa on tulostettu kerätyt normaalivoima N, leikkausvoima Q, taivutusmomentti My lokaalin y-akselin ja Mz lokaalin z-akselin ympäri.

```
***** POST1 ELEMENT TABLE LISTING *****
```

STAT ELEM	CURRENT N1	CURRENT 01Z	CURRENT MY1	CURRENT MY2	CURRENT MZ1	CURRENT MZ2
1	-1000. 0	0.58989E-18	0. 13455E-04	0.13455E-04	0. 38302E+07	0. 38302E+07
2	7213. 9	0.85660E-18	0.13455E-04	0.13453E-04	0.38302E+07	0.69849E-09
3	7571.2	3064. 2	0. 37253E-07	0. 30642E+07	0. 60316E-06	0. 60366E-06
4	-642.79	-766.04	0. 30642E+07	0. 15321E+07	0.60350E-06	0.60373E-06
5	-642.79	-766.04	0. 15321E+07	0.20623E-06	0.60326E-06	0.60631E-06
6	-9063.1	0. 0000	4000.0	0. 0000	0. 0000	0.0000

Seuraavaksi listataan tukireaktiot

***** POST1 TOTAL REACTION SOLUTION LISTING ***** NODE FX FY FZ MX MY MZ 1 0. 24251E-08 1000.0 0. 58990E-18-0. 13455E-04-0. 12476E-04 0. 38302E+07

Nostopuomin taivutusmomenttikuvio

Tulostetaan vielä pylvään taivutusmomenttikuvio

Lasketaan sitten poikkileikkauksen jännitykset elementin 3 solmun 2 kohdalla.

Kuormitukset

Normaalivoima N	7571.2
Leikkaus <i>v</i> oima Q	3064.2
Taivutusmomentti Mt	3.06E+06

Poikkileikkauksen laskenta (Ele 3 solmu 2)

Pinta-ala A	3018	mm^2
lyy	9.95E+06	mm^4
Sy uuman yläreuna	74077.5	mm^3

Yläpinnan piste	66.5	mm	ey
Sigma_taiv	20.47	MPa	
Sigma_N	2.51	MPa	
Sigma_yhd	22.98	MPa	

Uumanyläreuna	58	mm	ey
Sigma_taiv	17.86	MPa	
Sigma_N	2.51	MPa	
Sigma_x	20.37	MPa	
Tau	4.15	MPa	
Sigma_yhd	21.60	MPa	

$\tau = \frac{QS_y}{I_y b}$	(b on kuvan s)
$\sigma_{yhd} = \sqrt{(\sigma_b + \sigma_b)}$	$\left(\frac{1}{N}\right)^2 + 3\tau^2$

Sigma_max	22.98 MPa
Sigma_sall	150 MPa

		-
Suhdeluku	6.526537	Ssall/Smax
Sallittu kuorma	6526.5	N
Taakka	665.3	ka

Havaitaan, että tukireaktiot ovat tasapainossa ulkoisen kuorman -1000 N kanssa. Lasketaan sylinterivoima

p2x = rsx	766.0444 mm	Sylinterin yläpää	
p2y = rsy	642.7876 mm		
p1x	0 mm	Sylinterin alapää	
p1y	-1000 mm		
p21v	766.0444 mm		
pz1x	700.0444 11111		
p21y	1642.788 mm		
Pit	1812 616 mm	-	
	1012.010		
esx	0.422618	Sylinterin ykkösvektori	$\vec{F}_{a} = F_{a}\vec{e}_{a}$
esy	0.906308		3 3 3 3
			→→ →
	422.6183 mm	Sylinterin momenttivarsi origoon	$p_2 \times e_s \bullet e_z$
F	1000 N		
L	3830.222 mm	Pistevoiman momenttivarsi origoon	
Sylinterivoima Fs	-9063.08 N		
Normaalivoima	642.79 N		

PS. Puomin kulman saisi myös muutettua APDL komentojonon alulla:

/PREP7 *afun,deg Theta=40 K,1 ,,-1300,, K,2 ,,-1000,, K,3 ,,0,, k,4,5000*cos(Theta),5000*sin(Theta) k,5,0,500 k,6,1000*cos(Theta),1000*sin(Theta) KBETW,6,4,0,RATI,0.5,

!* Lift Boom end !* Boom Orientation KP !* Lift cyl end

!* Boom mid point

!* Boom angle

!* Column points

PS2. Alla oleva APDL komentojonon pätkä laittaa nivelen solmuun, jonka koordinaatit ovat JointX, JointY

!* End Release (Nivel)

JointX=0 JointY=0 !* Omia muuttujia

NSEL,S,LOC,X,JointX NSEL,R,LOC,Y,JointY ESLN,S,0,ALL ENDRELEASE,,-1,ROTZ

NSEL,ALL ESEL,ALL

Suurinpiirtein kuvan mukainen kappale pitäisi prässätä 4 mm teräslevystä. Kappaleen pitäisi kestää voima F = 1000 N, jolloin suurin sallittu jännitys 100 MPa ei saisi ylittyä. Mitoita kappale kaksiulotteisena mallina likimääräisesti kokeilemalla ANSYS10ED Workbench-ohjelmalla (symmetriaa ei nyt kannata hyödyntää). Kimmokerroin E = 200 GPa ja Poissonin vakio 0.3.

Tämä ratkaisu on tehty ANSYS WB 10 ED-ohjelmalla. Sitä voi melko suoraan soveltaa ANSYS 14 WBohjelmaan, sillä poikkeuksella, että 14-versiossa mallinnus kaksiulotteisena pitää valita heti kun on raahannut Static Structural analyysin työpöydälle. Valitaan sieltä Geometry ja vaihdetaan oikealla olevassa ikkunassa 3D -> 2D.

Koitetaan löytää jostain WB:n käynnistys ja valitaan Empty project, jonka jälkeen kuvaruutu voisi näyttää seuraavalta.

Tehdään New geometry ja valitaan millimetrit. Klikataan sitten Z-akselia. Työkalurivillä näkyy mm. seuraavanlaisia työkaluja, jotka ovat: pyöritä, siirrä zoomaa, zoomaa laatikko ja sovita kuvaruutuun. Laita heti zoomilla mittakaava suurinpiirtein sopivaksi mallille, jotta parametrinen malli suuremmalla todennäköisyydella ei mene myöhemmin sekaisin. Nyt 50 mm kelpaa.

Geometrian mallinnus aloitetaan Sketching valinnalla. Tärkeät työkalut mallinnusta varten ovat Draw, Modify, Dimensions ja Constraints. Kokeillaan piirtää neljä ympyrää.

Valitaan sitten heti Constraints ja sieltä Equal radius ja klikataan

12.50	37.50	
	Draw	۸
 > Line ♦ Langent Line ♦ Line by 2 Tangents A Polyline ♥ Polygon □ Rectangle ♥ Rectangle by 3 Points ♥ Oval ♥ Circle ♥ Circle by 3 Tangents > Are by Tangents 		
Arc by langent Arc by 3 Points Arc by 2 Center ➡ Ellipse ≯ Spline ★ Construction Point at Intersection	on	
	M 17	
	Modify	•
	Dimensions	_
	Constraints	
	Settings	_

sisemmät ympyrät ja ulommat ympyrät samansäteisiksi. Piirretään sitten pari vaakasuoraa viivaa.

Ylempi viiva on tahallaan piirretty tangeeraamaan pienenpää ympyrää, joten ANSYS on tietysti päätellyt, jotta sellainen rajoite on voimassa. Mitoitetaan ympyrät 12 mm ja 18 mm ja huomataan, että ylempi viiva seuraa pienenpää ympyrää. Asetetaan Detail View-ikkunasta Show Constraints päälle ja etsitään nuot virheelliset rajoitteet. Ne löytyvät viivan 13 kohdalta. Painetaan

kuvan kohdassa Delete (Tangent pitää olla sininen), jolloin

rajoite poistuu. Valitaan sitten Constraints ja sieltä Symmetry ja

klikataan ensin katkoviivalla esitettyä x-akselia ja sitten viivoja.

Mitoitetaan sitten viivojen välimatka V4 = 8 mm.

Coincident: .Center Point	Point Cr10.Center	
Full Circle Cr10		
Coincident	Point Ln12.End	
Coincident	Point Ln13.End	
Equal Radius	Full Circle Cr8	
Coincident: .Center Point	Point Cr9.Center	
E Line Ln12		
Horizontal	Axis Line XAxis	
Coincident: .Base Point	Full Circle Cr8	
Coincident: .End Point	Full Circle Cr10	
Line Ln13		
Horizontal	Axis Line XAxis	
Tangent	Full Circle Cr7	1
Tangent	Full Circle Cr9	
Coincident: .Base Point	Full Circle Cr8	
Coincident: .End Point	Full Circle Cr10	

Tarkoitus on nyt tehdä pinta, mutta sitä varten mallin pitää olla yhtenäinen. Valitaan Modify valikosta Trim ja klikataan ulompien ympyröiden ylimääräisiä viivanpätkiä, jolloin mallin pitäisi olla alla olevan kuvan mukainen.

Valitaan sitten ylämenusta Concept -> Surfaces from sketches, klikataan jotain viivaa ja painetaan sitten Apply (vasemmalla alhaalla) ja Generate (ylhäällä).

Mallia voisi jo kokeilla laskea, joten talletetaan se ja siirrytään Project'in puolelle ja valitaan kohdasta Advanced Geometry Defaults kaksiulotteinen mallinnus, jolloin säästetään mallin koossa ja voidaan käyttää kiinnitystä ja kuormitusta viivoille pintojen sijaan.

Valitaan sitten New simulation ja muutellaan kohtia Mesh, Environment ja Solution. Tämä toimii hiiren väärällä nappulalla ao. kohdasta. Muutellaan ensin Mesh -> Insert -> Sizing, jolloin alhaalla odotetaan geometrian valintaa. Ylhäällä on työkalurivissä oikealla olevan kuvan näköisiä valintamahdollisuuksia (valitse: piste, reuna, pinta tai tilavuus). Napautetaan tilavuus, klikataan mallia ja painetaan Apply. Valitaan sitten elementin koko 2 mm, jolloin elementtejä tulee enemmän (varo, ettei tule liikaa tämä on opiskelijaversio). Lisätään sitten Environment kohdasta Cylindrical Support vasempaan ympyrään ja Bearing Load oikeaan ympyrään. Määritetään kuormitus komponenteittain (Define by) ja laitetaan x-suuntaan 1000 N kuormaa. Alla olevan kuvan saa kun klikkaa ensin Bearing Load ja Ctrl pohjassa support.

Scope		
Scoping Method	Geometry Selection	
Geometry	Apply	Cancel
Definition		
Suppressed	No	
Туре	Element Size	
Element Size	Default	
Edge Behavior	Curv/Proximity Refineme	ent

=	Scope		
	Scoping Method	Geometry Selection	
		Apply	Cancel
3	Definition		
	Define By	Vector	
	Туре	Bearing Load	
	Magnitude	0. N	
	Direction	Click to Define	
	Suppressed	No	

Listään Solution -> Insert -> Stress -> Von Mises ja Deformation - >Total ja ratkaistaan malli.

Todetaan, että jännitys on liian suuri, se on väärässä paikassa ja levyn vahvuutta ei ole annettu. Mennään takaisin Design Modellerin puolelle ja muutetaan:

Levyn vahvuus = 4 mm. D2 = 25 ja lisätään pyöristykset

Modify -> Fillet = 3 mm ja valitaan sopivat viivat.

Details View		
Details of SurfaceSk1		
Surface From Sketches	SurfaceSk1	
Base Objects	1 Sketch	
Operation	Add Material	
Orient With Plane Normal	? Yes	
Thickness (>=0)	4 mm	

Mitoitetaan vielä pyöristys ja huomataan, että ANSYS kytki nyt mukavasti pyöristykset yhtäsuuriksi. Painetaan taas Generate ja siirrytään Projektin puolelle. Kuvasta vielä huomataan, ettei mallin pituutta ole mitoitettu, mutta osannet sen tehdä helposti.

Painele tuolta Update Model using parameter jne. Ratkaise tehtävä simulaation puolella ja huomaa, että jännitykset näyttävät olevan alle 100 MPa.

Laitetaan vielä lopuksi Mesh kohdasta lisäys Refinement ja valitaan oikeanpuoleinen sisäympyrä.

Seuraavassa on valittu 4 kuvaa näkyviin valikosta, joka näkyy alla olevan kuvan keskellä.

Harjoitustyössä 2 ei voi käyttää näin pientä elementtijakoa, kokeile sopivaa. Tuo vasemmalla ympyrällä oleva Cylindrical support estää myös kiertymisen. Sen voi kyllä yrittää vapauttaa ja muistaakseni jännitysten laskenta toimii. Siirtymät voivat olla mitä sattuu, koska rakenteella on nyt jäykän kappaleen liikemahdollisuus (pyöriminen).

Ai niin se materiaali. ANSYS olettaa materiaaliksi teräksen. Voit vaihtaa sen tuosta

PS. WB10: Jos saat paljon virheilmoituksia yrittäessäsi avata DM-geometriaa projektin puolella, niin WB10 version talletetun simulaation voi avata, mutta sieltä ei kannata yrittää avata DM-geometriamallia Käynnistä uusi WB ja avaa geometria siellä. Jos simulaatiossa on linkki kunnossa, niin malli päivittyy simulation Project-Update model komennolla. Jos linkki ei ole kunnossa, niin...

00	ConcreteWall	V C
	Model	V 0
	Diriconment	V C

🚽 Generate

Kuvan mukainen reiällinen suorakaide on mallinnettu SolidWorks-ohjelmalla kahtena Sketchosiona ja tallennettu IGES-formaatissa. Käytä ko. tiedostoa geometriana ja anna ensin molempien osien paksuutena 5 mm ja laske sitten normaalijännitys ja vertaa tuloksia ns. Kirschin ongelmaan. Vahvista sitten keskellä olevaa holkkia ja tutki jännityksen pienentymistä

Käynnistä WB ja valitse Empty project, jonka jälkeen New geometry: Millimeters ja valitse Import External geometry File ja valitse alhaalta: Stich Surfaces = No ja sitten ylhäältä Generate

Muodosta sitten osista uusi Part (valitse molemmat Surface Bodyt Ctrl-pohjassa) ja kytke ne sitten yhteen Form New Part (hiiren oikea näppäin). Liitä partin osat toisiinsa: Tools -> Joint ja valitse pintamallit hiirellä ja Ctrl-nappulalla (Muista Generate). Laita sitten pintojen paksuus 5 mm ja siirry: Project->New simulation. Muuta Contact = Edge/Edge = Yes ja käy päivittämässä kontaktin muutos Project'in puolella (Update).

Verkotuksen (Mesh) Sizing voisi muuttaa Element Size = 30 mm ja laittaa Refinement sisäympyrälle (kaksi viivaa Ctrl-pohjassa). Lisää levyn vasempaan reunaan siirtymä (Displacement) x=0 ja z=0. Sitten Environment Add->Force=2500 N, jonka pitäisi antaa keskimääräinen vetojännitys 1 MPa. Ratkaisemalla tehtävä pitäisi tuloksen nyt (max. jännitys = 3.12) näyttää seuraavalta:

joka on lähellä Kirch'in ongelman ratkaisua, maksimijännitys reiän reunalla on 3 * keskimääräinen vetojännitys. Jos pitäisi vähentää reunajännitystä, niin reikää voisi vahvistaa holkilla. Geometry->Parts->Surface Body->Thickness = 15 mm ja laskea tehtävä uudelleen, jolloin

maksimijännitys likimain puolittui.

Ansys versiolla 14 voi lukea SolidWorks-tiedoston sellaisenaan suoraan geometriaksi. Geometria pitää kuitenkin aukaista DesignModeller'issa ja muodostaa Sketch-osioista uusi Part-osa ja sitten vasta siirtyä simulaatioon.

