Introduction to materials modelling

13. exercise - numerical solution

1. Solve the uniaxial creep problem

$$\sigma = E(\varepsilon - \varepsilon_c),\tag{1}$$

where the creep strain-rate is governed by equation

$$\dot{\varepsilon}_{\mathrm{c}} = \frac{1}{\tau_{\mathrm{pr}}} \left(\frac{\sigma}{\sigma_{\mathrm{r}}} \right).$$

The pseudo-relaxation time $\tau_{\rm pr}$ is a material constant and $\sigma_{\rm r}$ is an arbitrary reference stress. The relaxation time $\tau_{\rm r}$ is $\tau_{\rm r} = \tau_{\rm pr} \varepsilon_{\rm r} = \tau_{\rm pr} \sigma_{\rm r}/E$. Consider a constant strain-rate loading $\varepsilon(t) = \varepsilon_{\rm r} t/\tau_{\rm r}$. Integrate the stress response to the time instant $4\tau_{\rm r}$ using an appropriate time-step Δt . Use (a) explicit Euler and (b) implicit Euler method.

Hint. Formulate equation (1) in a non-dimensional form using a non-dimensional stress $y = \sigma/\sigma_r$. First determine the critical time-step for the explicit Euler method.

2. Consider the nonlinear kinematic Armstrong-Frederick (Chaboche model with one back stress) type hardening model, which can be described as

$$\sigma = C^{e}(\varepsilon - \varepsilon^{p}), \tag{2}$$

$$f(\boldsymbol{\sigma}, \boldsymbol{X}) = \sigma_{\text{eff}} - \sigma_{y0} = 0, \tag{3}$$

$$\sigma_{\text{eff}} = \sqrt{\frac{3}{2}(s - \boldsymbol{X}) : (s - \boldsymbol{X})},\tag{4}$$

$$\dot{\boldsymbol{\varepsilon}}^{\mathrm{p}} = \dot{\lambda} \frac{3}{2} \frac{\boldsymbol{s} - \boldsymbol{X}}{\sigma_{\mathrm{eff}}},\tag{5}$$

$$\dot{\alpha} = \dot{\varepsilon}^{\mathrm{p}} - \dot{\lambda}\gamma\alpha \tag{6}$$

where s is the deviatoric stress $s = \sigma - \frac{1}{3} \operatorname{tr}(\sigma) I$ and the relation between the internal variable α and the back stress X is $X = \frac{2}{3}C\alpha$. Material parameters are σ_{y0}, C, γ . Notice that $\dot{\lambda}$ equals to the rate of the effective plastic strain

$$\dot{\bar{\varepsilon}}^{\mathrm{p}} = \sqrt{\frac{2}{3}\dot{\boldsymbol{\varepsilon}}^{\mathrm{p}} : \dot{\boldsymbol{\varepsilon}}^{\mathrm{p}}}.$$

- Compute the maximum stress predicted by the model using monotonous uniaxial tensile stress as loading.
- Determine the stress response in the monotonous unaxial tensile stress loading,
 i.e. the ε^p σ-curve.

Hint. Remember that ε^p , α and X are deviatoric, so they can be treated as a functions of only one component.