Introduction to materials modelling

11. exercise – viscoelasticity

1. Derive the constitutive equation for the standard linear viscoelastic solid model shown below. Determine also the creep compliance and relaxation modulus and the relaxation time.

- 2. The Maxwell model combines the linear elastic spring and linear viscous dashpot in series. The constitutive model for the linear spring is $\sigma = E\varepsilon$ ja for the linear viscous dashpot $\dot{\varepsilon} = \sigma/\eta$, where E is the Young's modulus, η viscosity and $\dot{\varepsilon}$ is strain rate.
 - Determine the stress response $\sigma(t)$ when the model is loaded by cyclic straining $\varepsilon(t) = \varepsilon_{\rm a} \sin(\omega t)$, where $\varepsilon_{\rm a}$ is the strain amplitude. What can you say about the response if $\omega \gg 1/\tau_{\rm rel}$, where $\tau_{\rm rel} = \eta/E$ is the relaxation time of the model.

Hint. Try solution in the form $\sigma(t) = \sigma_a \sin(\omega t + \phi)$. Solve the phase-angle ϕ and stress amplitude σ_a . Some formulas which might be useful:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\cos \alpha = \frac{1}{\sqrt{1 + \tan^2 \alpha}}.$$

3. Determine the central point deflection v(L/2, t) of a simply supported beam made of Kelvin-Voigt material. Draw the time history of the deflection. The loading is shown on the rhs figure.

