Introduction to materials modelling

10. exercise - plastic models, continuum damage models

1. Gurson presented in 1977 a yield condition for a porous medium ${ }^{1}$

$$
f\left(I_{1}, J_{2}\right)=\frac{3 J_{2}}{\sigma_{\mathrm{y}}^{2}}-\left[1+\xi^{2}-2 \xi \cosh \left(\frac{I_{1}}{2 \sigma_{\mathrm{y}}}\right)\right],
$$

where ξ is the volumetric pore fraction and σ_{y} is the yield strength of the metal matrix.
(a) Sketch the locus of yield surface in the meridian plane $\left(I_{1}, \sqrt{3 J_{2}}\right)$ for some values of $x i$ (e.g. $\xi=0.1$).
(b) Determine the expression for the plastic strain rate $\dot{\varepsilon}_{i j}^{\mathrm{p}}$ when assuming associative flow rule $\dot{\varepsilon}_{i j}=\dot{\lambda} \partial f / \partial \sigma_{i j}$.

The volumetric prore fraction ξ can be considered as a damage variable, having own evolution equation, which consists of growth and nucleation of pores

$$
\dot{\xi}=\dot{\xi}_{\text {growth }}+\dot{\xi}_{\text {nucl }}=(1-\xi) \operatorname{tr}\left(\dot{\varepsilon}^{\mathrm{p}}\right)+\frac{\xi_{N}}{S_{N} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{\bar{\varepsilon}^{\mathrm{p}}-\varepsilon_{N}}{S_{N}}\right)\right] \dot{\varepsilon}^{\mathrm{p}},
$$

where $\bar{\varepsilon}^{\mathrm{p}}$ the equivalent plastic strain, S_{N}, ε_{N} and ξ_{N} are model parameters.
2. Compare two different continuum damage representations in uniaxial case

$$
\begin{array}{r}
\sigma=(1-D) E \varepsilon^{\mathrm{e}}, \\
\sigma=\exp (-D) E \varepsilon^{\mathrm{e}}, \tag{2}
\end{array}
$$

assuming that both damage descriptions have the same evolution equation

$$
\begin{equation*}
\dot{D}=\frac{1}{t_{\mathrm{d}}}\left(\frac{\varepsilon^{\mathrm{e}}}{\varepsilon_{\mathrm{r}}}\right)^{2 r}, \tag{3}
\end{equation*}
$$

where t_{d} and r are material parameters. The reference value for strain can also be expressed as $\varepsilon_{\mathrm{r}}=\sigma_{\mathrm{r}} / E$. Notice that in the model (2) the damage variable is not bounded above.
Solve the response in a constant strain rate tensile test where strain is increasing linearly as $\varepsilon=\dot{\varepsilon}_{0} t$, where $\dot{\varepsilon}_{0}$ is the strain rate which is kept constant in the test. Draw the results in the $\left(\varepsilon / \varepsilon_{\mathrm{r}}, \sigma / \sigma_{\mathrm{r}}\right)$-coordinate system. Assume that there are no inelastic strains, i.e. $\varepsilon=\varepsilon^{e}$.
Determine also the value of the damage variable and strain at the point of maximum stress. Draw the damage as a function of strain. Investigate the effect of r, for example using the values $r=1,2,4$.

[^0]
[^0]: ${ }^{1}$ A.L. Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media. Journal of Engineering Material and Technology, 99(1):215, 1977. https://doi.org/10.1115/1.3443401

