

Introduction to materials modelling

4. exercise – deformation, strain

1. With a 120°-strain gauge rosette the following strains are measured: $\varepsilon_{\rm a} = 400 \ \mu, \varepsilon_{\rm b} = 630 \ \mu, \varepsilon_{\rm a} = -280 \ \mu$. Calculate also the principal strains, the maximum shear strain and their directions.

2. Consider the deformation state shown in the figure below.

- (a) Determine the deformation mapping $\chi(X)$ and the deformation gradient F(X).
- (b) Determine the displacement field $\boldsymbol{u}(\boldsymbol{X})$.
- (c) Determine the Green-Lagrange strain tensor \boldsymbol{E} , infinitesimal strain tensor $\boldsymbol{\varepsilon}$ and the infinitesimal rotation tensor $\boldsymbol{\Omega}$.
- (d) Calculate the deformed length of |C'B'|, initially CB by using the Green-Lagrange strain tensor and the infinitesimal strain tensor.
- (e) Calculate the deformed length of |0A'|, initially OA by using the Green-Lagrange strain tensor and the infinitesimal strain tensor.
- (f) Determine the relative volymetric change both by using the deformation gradient and by using the linear strain tensor.
- (g) What are your conclusions from cases (d)-(f)?