Introduction to materials modelling

1. exercise - index notation

1. Exercising index notation and Einstein's summation convention.
(a) Write out $\delta_{i m} A_{m j}$ and express the result without the dummy index m.
(b) Investigate if the following expressions are correct.
i. $a_{m} b_{s}=c_{m}\left(f_{r}+d_{r}\right)$,
ii. $a_{m} b_{s}=c_{m}\left(f_{s}+d_{s}\right)$,
iii. $a_{i}=b_{j} c_{i} d_{i}$,
iv. $x_{i} x_{i}=r^{2}$,
v. $a_{i} b_{j} c_{j}=3$.
(c) Simplify the expression $\delta_{i j} \delta_{j k} \delta_{k p} \delta_{p i}$.
(d) If $A_{i j}=-A_{j i}$, show that: $A_{i j} v_{i} v_{j}=0$.
(e) If $A_{i j}=-A_{j i}$ and $B_{i j}=B_{j i}$, show that: $A_{i j} B_{i j}=0$.
2. Second order cartesian tensor $A_{i j}$ can be expressed as teh following matrix

$$
\mathbf{A}=\left[\begin{array}{crr}
2 & -3 & 0 \\
4 & 4 & 1 \\
-2 & 2 & 5
\end{array}\right]
$$

Determine the values of the the following expressions:
(a) $A_{i i}$,
(b) $A_{i j} A_{i j}$,
(c) $A_{i j} A_{j i}$,
(c) $\delta_{i i} A_{m m}$,
(d) $A_{p q} A_{p q}$,
(e) $A_{i j}=\frac{1}{2}\left(A_{i j}+A_{j i}\right), \quad$ (f) $A_{i j}=\frac{1}{2}\left(A_{i j}-A_{j i}\right)$.
3. How many equations are present in the following expressions. Write the equations out explicitly.
(a) $v_{m}=Q_{m n} u_{n}$,
(b) $A_{i j}=B_{i r} C_{r j}$,
(c) $S=v_{i} Q_{i j} v_{j}$.

