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Plasticity - basic incredients

Characteristic feature in plastic deformation is the formation of permanent deformations.
In a closed loading process energy is dissipated into structural changes of a material and into heat.
To discribe plasticity three type of equations are needed:

@ yield condition which determines the boundary of the elastic domain,

@ flow rule which describes how the plastic strains evolve,

© hardening rule which describes the evolution of the elastic domain, i.e. the evolution of the yield
surface.
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Permanent plastic strains

Stress loading OABC:
Elastic deformation OA
Plastic deformation AB
Elastic deformaton during unloading BC

Dissipated energy [ ode® in the cycle OABC.
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Relation between tangent- and hardening modulae

Small strains can be addidively decomposed into elastic
and plastic components

e=¢e"+€P.

Tangent and hardening modulae are defined as

do do
By = — = —.
CT e’ P deP
For the increments
do do  do
de = de® 4+ de® —_= =4 =
€ e +de = o E + Ep’
yielding
FE FEE;
E, = P E, =
‘T ErE, O PTE_E
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Physics of plastic deformation

Deformation of polycrystals:
o First slip in crystals with slip planes oriented at o
45° angle to the direction of applied stress. — v
@ Initial yield stress depends on the grain size: oy k- '
Hall-Petch relation 't/
0 / = >
O'yozo'g—'—ﬁ. R'BR €

@ Increased dislocation density causes increase in

the slip deformation resistance which shows in
Figure 1.17 from Lemaitre & Chaboche: Mechanics of Solid Materials

hardening response.
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Yield function (initial)

Written usually as f(o, parameters) = 0.

Separates the elastic domain from the plastic state:

f(o,..) <0 stresss in the elastic domain
f(o,..) =0 plastic state
f(o,..) >0 not possible

For an isotropic solid the yield function has to be independent of coordinate orientation, i.e.

f(e,.) = f(BoBT,..) Vorthogonal B
Thus f(I1, I3, I3) or preferably f(I, Jo, cos 30)
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Yield function (cont'd)

If an isotropic yield function is given in the form
f(I, Ja,cos30) = 0,

it facilitates the investigation of its symmetry properties in the deviatoric plane.
@ The yield function is 120° periodic, i.e. p = +/2J5 has to have same values at 6 and 6 + 120°.

@ Since cos is an even function, there has to be symmetry with respect to 8 = 0°. Due to the 120°
periodicity, f has to be symmetric also wrt = 120° and 6 = 240°.

o If we set 0 = 60° 4 1), then cos(30) = — cos(3¢) and setting 6 = 60° — 1) gives
cos(30) = — cos(3¢), so they have the same p, thus the yield curve at deviatoric plane is
symmetric about § = 60°, thus it has to be symmetric also about 6 = 180° and 6 = 300°.

As a conclusion the initial yield curve for isotropic solids in the deviatoric plane is completely
characterized by its form in the sector 0° < 6 < 60°.
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Some well known yield functions

@ Pressure independent yield functions f(J, cos36) = 0:

» Tresca
1
Tmax = 5(01 —03) =7y =0

» von Mises

\/3J2—(fy=0, or \/Jz—TyZO.

@ Pressure dependent vyield functions f(I1, J2, cos36) = 0:

> Drucker-Prager

\/3J2+0¢Il—ﬂ20

» Mohr-Coulomb
moy, +o03 —oc =0
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Tresca vs. von Mises yield surfaces
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Tresca vs. von Mises - experiments
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Mohr-Coulomb vyield criteria

T =cC— o

(01 +03)
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Mohr-Coulomb vyield criteria (cont’d)
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fc is the uniaxial compressive strength.
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Failure surfaces for concrete

0 = 60°
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Mohr-Coulomb with tension cut-off (green), Barcelona model (red), Ottosen’s model (blue).
Black dots are test results by Kupfer et al. J. Am. Concr. Inst., 66 (1969), pp. 656-666
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Solution of elasto-plastic material model

Assume, that at time ¢,, stresses o, strains €,, and plastic strains € are know. The task is to solve the
following equations system at time t,,11

Ony1 = C(eny1 — €$+1)
f(O@ni1, Ang1) =0

of .
et =i

80- ‘O'—O'n+1 n+1nn+1

-p _ N
Eni1 = Ant1

Rate form of the constitutive equation

. . . o -0 Entl1 — € Ant1 — A
Onp1=C(lnt1—Enyy) = %tn:ce( n+At - n+At nn”“)

= Ao = C°(Ae - Aln)
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Solution of elasto-plastic material model - linearization
Linearizing wrt the state o-ﬁl_H, A;H

o _On on
0o = C°(6e — An + AXdn), now on = o do + TN oA
ey—1 on _ o on
(c*) —|—A)\ao_] do = de (n—i—A)\—a)\)é)\ (1)

The yield and consistency conditions are not necessarily satisfied at state o-fH_l, )\fH_l, linearizing the yield
function
f

o ) = flongn M) + 870'50- + 55)\ ~0 (2)

For simplicity, denote f* = f(o% 1, \541). Substituting the change in stress (1) into (2) and denoting
D=(C) '+ A)\a—n, it is obtained
oo
i T -1 on of o\

= =

| =

i T -1 _ Tl on\ Of
(f*+n D "de), where A=n"D <n+A)\a/\) 8)\6)\. 3)
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Algorithmic tangent

The algorithmic tangent is computed after the iteration is converged, then f* = 0 and substituting (3)
into (1) gives

do = [Dl — lD*1 (n + A/\%) nTDl} be = do=CTe,
where

on
o\

> nTD™!, and D=C° +A)\8—n.

ATS e
-D'--D A
C 1 n + A\ o

The ATS goes to the stiffness matrix
k= [ BTcATSBav,
Qe

and is necessary to obtain quadratic convergence in the solution of equilibrium equations of the system.
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Geometric illustration of the radial return algorihm

Both kinematic and isotropic hardening (Fig. Simo, Hughes Computational Inelasticity, Springer 2000)
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Summary

@ Initial values o,,€,,,€0, A\, and C°, new strain €,,41.
@ Compute the elastic predictor: o5, | = C(g,41 — €5).
© Check if the yield condition is satisfied.

(i) If f(oht1,An) < O then the state at ¢, is elastic, set 0ny1 = Opq1, Any1 = An, € = €5 and
C = C° and exit.

(i) f(ohe1, An) > 0 then the state is plastic, solve 041, Ant1 iterating:
(a) A= A_lf(o'fwrl’)‘iwrl)v
on
b) 6o =—-D"1! AXN—)5A,
(v) 6o (n+ax2%)
(c) update: ot = 0% | +d0 and ALY = NP +6A

(iii) If convergence obtained, then compute the algorithmic tangent matrix.
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