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Plasticity - basic incredients

Characteristic feature in plastic deformation is the formation of permanent deformations.

In a closed loading process energy is dissipated into structural changes of a material and into heat.

To discribe plasticity three type of equations are needed:

1 yield condition which determines the boundary of the elastic domain,

2 flow rule which describes how the plastic strains evolve,

3 hardening rule which describes the evolution of the elastic domain, i.e. the evolution of the yield
surface.
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Permanent plastic strains

Stress loading OABC:
Elastic deformation OA
Plastic deformation AB
Elastic deformaton during unloading BC

Dissipated energy
∫
σdεp in the cycle OABC.
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Relation between tangent- and hardening modulae
Small strains can be addidively decomposed into elastic

and plastic components

ε = εe + εp.

Tangent and hardening modulae are defined as

Et =
dσ

dε
, Ep =

dσ

dεp
.

For the increments

dε = dεe + dεp ⇒ dσ

Et
=

dσ

E
+

dσ

Ep
,

yielding

Et =
EEp

E + Ep
or Ep =

EEt

E − Et
.
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Physics of plastic deformation

Deformation of polycrystals:

First slip in crystals with slip planes oriented at
45◦ angle to the direction of applied stress.
Initial yield stress depends on the grain size:
Hall-Petch relation

σy0 = σ0 +
k√
d
.

Increased dislocation density causes increase in
the slip deformation resistance which shows in
hardening response. Figure 1.17 from Lemaitre & Chaboche: Mechanics of Solid Materials
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Yield function (initial)

Written usually as f(σ, parameters) = 0.

Separates the elastic domain from the plastic state:

f(σ, ..) < 0 stresss in the elastic domain

f(σ, ..) = 0 plastic state

f(σ, ..) > 0 not possible

For an isotropic solid the yield function has to be independent of coordinate orientation, i.e.

f(σ, ..) = f(βσβT, ..) ∀ orthogonalβ

Thus f(I1, I2, I3) or preferably f(I1, J2, cos 3θ)
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Yield function (cont’d)

If an isotropic yield function is given in the form

f(I1, J2, cos 3θ) = 0,

it facilitates the investigation of its symmetry properties in the deviatoric plane.

The yield function is 120◦ periodic, i.e. ρ =
√

2J2 has to have same values at θ and θ + 120◦.

Since cos is an even function, there has to be symmetry with respect to θ = 0◦. Due to the 120◦

periodicity, f has to be symmetric also wrt θ = 120◦ and θ = 240◦.

If we set θ = 60◦ + ψ, then cos(3θ) = − cos(3ψ) and setting θ = 60◦ − ψ gives
cos(3θ) = − cos(3ψ), so they have the same ρ, thus the yield curve at deviatoric plane is
symmetric about θ = 60◦, thus it has to be symmetric also about θ = 180◦ and θ = 300◦.

As a conclusion the initial yield curve for isotropic solids in the deviatoric plane is completely
characterized by its form in the sector 0◦ ≤ θ ≤ 60◦.
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Some well known yield functions

1 Pressure independent yield functions f(J2, cos 3θ) = 0:

I Tresca
τmax = 1

2
(σ1 − σ3)− τy = 0

I von Mises √
3J2 − σy = 0, or

√
J2 − τy = 0.

2 Pressure dependent yield functions f(I1, J2, cos 3θ) = 0:

I Drucker-Prager √
3J2 + αI1 − β = 0

I Mohr-Coulomb
mσ1 + σ3 − σc = 0
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Tresca vs. von Mises yield surfaces
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Tresca vs. von Mises - experiments
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Mohr-Coulomb yield criteria

Mohrin ympyr ät ja Coulombin my öt öehto

c/µ

c

τ = c− µσ

φ

R = 1
2(σ1 − σ3)

P = 1
2(σ1 + σ3)

τ

σσ1σ3

RK 5/13
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Mohr-Coulomb yield criteria (cont’d)

Mohrin-Coulombin my öt öhto
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fc is the uniaxial compressive strength.

R. Kouhia (Tampere University, Structural Mechanics) FEM advanced course - lecture 11 12 / 18



Failure surfaces for concrete
Betonin murtoehtoja
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Mohr-Coulomb with tension cut-off (green), Barcelona model (red), Ottosen’s model (blue).

Black dots are test results by Kupfer et al. J. Am. Concr. Inst., 66 (1969), pp. 656-666
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Solution of elasto-plastic material model

Assume, that at time tn stresses σn, strains εn and plastic strains εp
n are know. The task is to solve the

following equations system at time tn+1
σn+1 = C e(εn+1 − εp

n+1)

f(σn+1, λn+1) = 0

ε̇p
n+1 = λ̇n+1

∂f

∂σ

∣∣∣∣
σ=σn+1

= λ̇n+1nn+1

Rate form of the constitutive equation

σ̇n+1 = C e(ε̇n+1 − ε̇p
n+1) ⇒ σn+1 − σn

∆t
= C e

(
εn+1 − εn

∆t
− λn+1 − λn

∆t
nn+1

)
⇒ ∆σ = C e(∆ε−∆λn)
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Solution of elasto-plastic material model - linearization
Linearizing wrt the state σi

n+1, λ
i
n+1

δσ = C e(δε− δλn + ∆λδn), now δn =
∂n

∂σ
δσ +

∂n

∂λ
δλ[

(C e)−1 + ∆λ
∂n

∂σ

]
δσ = δε−

(
n + ∆λ

∂n

∂λ

)
δλ (1)

The yield and consistency conditions are not necessarily satisfied at state σi
n+1, λ

i
n+1, linearizing the yield

function

f(σi+1
n+1, λ

i+1
n+1) = f(σi

n+1, λ
i
n+1) +

∂f

∂σ
δσ +

f

∂λ
δλ ≈ 0 (2)

For simplicity, denote f i = f(σi
n+1, λ

i
n+1). Substituting the change in stress (1) into (2) and denoting

D = (C e)−1 + ∆λ
∂n

∂σ
, it is obtained

f i + nTD−1

[
δε−

(
n + ∆λ

∂n

∂λ

)
δλ

]
+
∂f

∂λ
δλ = 0

⇒ δλ =
1

A
(f i + nTD−1δε), where A = nTD−1

(
n + ∆λ

∂n

∂λ

)
− ∂f

∂λ
δλ. (3)
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Algorithmic tangent

The algorithmic tangent is computed after the iteration is converged, then fk = 0 and substituting (3)
into (1) gives

δσ =

[
D−1 − 1

A
D−1

(
n + ∆λ

∂n

∂λ

)
nTD−1

]
δε ⇒ δσ = CATSδε,

where

CATS = D−1 − 1

A
D−1

(
n + ∆λ

∂n

∂λ

)
nTD−1, and D = C e + ∆λ

∂n

∂σ
.

The ATS goes to the stiffness matrix

K
(e)
0 =

∫
Ω(e)

BTCATSB dV ,

and is necessary to obtain quadratic convergence in the solution of equilibrium equations of the system.
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Geometric illustration of the radial return algorihm

Both kinematic and isotropic hardening (Fig. Simo, Hughes Computational Inelasticity, Springer 2000)
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Summary

1 Initial values σn, εn, ε
p
n, λn and C e, new strain εn+1.

2 Compute the elastic predictor: σe
n+1 = C e(εn+1 − εp

n).

3 Check if the yield condition is satisfied.

(i) If f(σe
n+1, λn) < 0 then the state at tn+1 is elastic, set σn+1 = σe

n+1, λn+1 = λn, ε
p
n+1 = εpn and

C = C e and exit.

(ii) f(σe
n+1, λn) ≥ 0 then the state is plastic, solve σn+1, λn+1 iterating:

(a) δλ = A−1f(σi
n+1, λ

i
n+1),

(b) δσ = −D−1(n + ∆λ
∂n

∂λ
)δλ,

(c) update: σi+1
n+1 = σi

n+1 + δσ and λi+1
n+1 = λin+1 + δλ

(iii) If convergence obtained, then compute the algorithmic tangent matrix.
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