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Algorithm for total Lagrangian formulation of a truss element

Load steps n = 1, 2, . . . , nmax

Increment load pn = pn−1 + ∆pn and set q (0)
n = qn−1

Iterate i = 0, 1, 2, . . . , imax

I In each element extract u from q and compute x
(i)
n = X + u

(i)
n and strains

ε(i)n =
1

`20

1
2
(X̃ + x̃ (i)

n )T
(

I −I
−I I

)
ũ(i)
n

I Compute internal force vector from element contributions

r̃ =
EA0

`0
ε(i)n

(
I −I
−I I

)
x̃ (i)
n =

N (i)

`0

(
I −I
−I I

)
x̃ (i)
n

I Assemble the global stiffness matrix K
(i)
n = K 0(X ) + Ku(X ,u

(i)
n ) + Kσ(ε

(i)
n ),

I Compute the global residual force f (i)
n = r

(i)
n − pn

I Solve the linearized system K
(i)
n δq (i)

n = f (i)
n , notice: δ symbol here means the iterative change!

I Update global displacement vector q i+1
n = q (i)

n − δq (i)
n
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Schematic comparison between TL and UIL formulations

Total Lagrange Updated incremental Lagrange

xA,n = XA + uA,n xA,n = xA,n−1 + ∆uA,n
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Algorithm for incremental updated Lagrangian formulation of a truss
Load steps n = 1, 2, . . . , nmax

Increment load pn = pn−1 + ∆pn and set q (0)
n = qn−1, ∆q (0)

n = 0

Iterate i = 0, 1, 2, . . . , imax

I In each element extract ∆u from ∆q and compute x
(i)
n = xn−1 + ∆u

(i)
n and strains

∆ε(i)n =
1

`20

1
2
(x̃n−1 + x̃ (i)

n )T
(

I −I
−I I

)
∆ũ(i)

n

I Update strain ε
(i)
n = εn−1 + ∆ε

(i)
n and normal force N

(i)
n = EA0εn

I Compute internal force vector from element contributions

r̃ = N (i)
n

(
I −I
−I I

)
x̃ (i)
n

I Assemble the global stiffness matrix K
(i)
n = K 0(x

(i)
n ) + Kσ(N

(i)
n ),

I Compute the global residual force f (i)
n = r

(i)
n − pn

I Solve the linearized system K
(i)
n δq (i)

n = f (i)
n , notice: δ symbol here means the iterative change!

I Update global displacement increment vector ∆q i+1
n = ∆q (i)

n − δq (i)
n

When converged update the nodal cooordinates xn = xn−1 + ∆un
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Timoshenko beam model
Takes the average transverse shear strains into account. It is based on the following two kinematic
assumptions:

1 fibers normal to the beam’s axis in the undeformed state remain straight,

2 these normal fibers do not stretch.

These assumptions can be satisfied by the following
displacement field

u(x, y) =uc(x)− y sin θ(x),

v(x, y) = vc(x)− y(1− cos θ(x)).

For linear model |θ|, |u/L|, |v/L| � 1 then

u(x, y) =uc(x)− yθ(x),

v(x, y) = vc(x).
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Virtual work of the Timoshenko beam model

Strains in the Timoshenko beam model are

εx =
∂u

∂x
=

duc
dx
− y dθ

dx
= u′c − yθ′, γxy =

∂u

∂y
+
∂v

∂x
=

dvc
dx
− θ = v′c − θ.

The virtual work equation is

−
∫ L

0

∫
A

(δεxσx + δγxyτxy)dAdx+

∫ L

0

δvcfdx = 0.

Since τ = Gγ is constant over the cross-section (without subscripts)∫
A

δγτ dA = δγ GAsγ ⇒
∫ L

0

δγQ dx,

where As is the effective shear area of the cross-section.
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Virtual work of the Timoshenko beam model (cont’d)

The axial force and bending moment results from (σ = Eε)

δεσ = (δu′c − yδθ′)E(u′c − yθ′) = δu′cEu
′
c−δu′cEyθ′ − δθ′Eyu′c + δθ′Ey2θ′,

and if
∫
A
Ey dA = 0, then ∫ L

0

∫
A

δεσ dAdx =

∫ L

0

(δu′cEAu
′
c + δθ′EIθ′)dx.

Introducing stress resultants N = EAu′c and M = −EIθ′ = EIκ, we get∫ L

0

(δu′cN + δκM)dx =

∫ L

0

(δεcN + δκM)dx.
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Simple Timoshenko beam element

The virtual work equation is now

−
∫ L

0

[δu′cEAu
′
c + δθ′EIθ′ + (δv′c − δθ)GAs(v

′
c − θ)]dx+

∫ L

0

δvcf dx = 0.

We have three independent functions to be interpolated uc, vc and θ. Notice that the axial and bending
deformations decouple if

∫
A
Ey dA = 0.

The simplest possible choice is to use linear C0-interpolation to all of these functions

u(e)c = N1(x)u
(e)
1 +N2(x)u

(e)
2 , v(e)c = N1(x)v

(e)
1 +N2(x)v

(e)
2 , θ(e) = N1(x)θ

(e)
1 +N2(x)θ

(e)
2 ,

and also the virtual ones

δu(e)c = N1(x)δu
(e)
1 +N2(x)δu

(e)
2 , δv(e)c = N1(x)δv

(e)
1 +N2(x)δv

(e)
2 , δθ(e) = N1(x)δθ

(e)
1 +N2(x)δθ

(e)
2 .
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Simple Timoshenko beam element (cont’d)
Denoting the vector of “strains” and unknown vector we can write the strain-displacement relation

e =

εκ
γ

 ,

q (e) =



u
(e)
1

v
(e)
1

θ
(e)
1

u
(e)
2

v
(e)
2

θ
(e)
2


e = Bq (e),where the strain displacement matrix has the form

B =

N1,x 0 0 N2,x 0 0
0 0 −N1,x 0 0 −N2,x

0 N1,x −N1 0 N2,x −N2
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Simple Timoshenko beam element (cont’d)
The material stiffness matrix has the form

C =

EA 0 0
0 EI 0
0 0 GAs


relating the strain vector e to the vector of stress resultants

Σ =

NM
Q

 = Ce .

The virtual work equation can now be put in the form

δqT (−Kq + p̄) = 0, for all δq ⇒ Kq = p̄.

where K and p̄ are assembled from the element contributions

K (e) =

∫
I(e)

BTCB dx, p̄(e) =

∫
I(e)

[0, N1, 0, 0, N2, 0]Tf dx.

R. Kouhia (Tampere University, Structural Mechanics) FEM advanced course 10 / 21



Timoshenko beam element - locking

Full integration requires two point integration. However, such approach results an element which locks
in the thin beam limit t→ 0.

Below is the convergence in tip displacement of a point loaded cantilever beam (also convergence of
energy) with three thickness to length values.
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Reasons for locking

When equal order interpolation is used spurious shear strains develop

γ = v′c − θ.

What to do?

Should the displacement interpolation be one order higher than rotation interpolation?

No, since then shear is linear and curvatute a constant. Remember the equilibrum equation Q = M ′.

Where we should put the extra effort?

In rotation since bending moment is more important than shear.
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Remedies

Under integration. When linear interpolation is used, use one point quadrature. It will under integrate
the terms coming from shear γ = v′ − θ

e =

εκ
γ

 , B =

N1,x 0 0 N2,x 0 0
0 0 N1,x 0 0 N2,x

0 N1,x N1 0 N2,x N2


It can be viewed also as a projection to a constant, and it is often written as

γ = Π0(v′ − θ) = v′ −Π0θ,

where Π0 is a projection operator - projection to a constant.

One problem still remains, ill-conditioning of the stiffness matrix when the beam is thin, i.e. t→ 0.
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Ill-conditioning

Looking the strain energy of the Timoshenko beam model

U(v, θ) = 1
2

∫ L

0

[EI(θ′)2 +GAs(v
′ − θ)2]dx

Using notations I = Ar2 and As = kA we obtain

U(v, θ) = 1
2

∫ L

0

EI

[
(θ′)2 +

k

2(1 + ν)

1

r2
(v′ − θ)2

]
dx.

Using dimensionless quantities ϑ = v/L and ξ = x/L, it is obtained

U(ϑ, θ) = 1
2

∫ 1

0

EI

L

[(
dθ

dξ

)2

+
k

2(1 + ν)

(
L

r

2
)(

dϑ

dξ
− θ
)2
]

dx

= 1
2

∫ 1

0

EI

L

[
κ̂2 +

k

2(1 + ν)

(
L

r

)2

γ2

]
dx, κ̂ = Lκ.
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Remedies to ill-conditioning

Since the shear energy has a minor role in thin beam behaviour, we can scale the shear stiffness like

GAs →
GAs

1 + α(h(e)/t)2
,

where α > 0 is a stabilization parameter, h(e) the length of an element and t thickness.

Condition number of the stiffness matrix for 10× 10 mesh with
stabilized MITC4 Reissner-Mndlin plate elements (300 dofs).
Figure from R. Kouhia, Eräitä matala-asteisia laattaelementtejä,
Rakenteiden Mekaniikka, Vol. 29, Nro 3-4, 1996, pp. 51-68.
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Selection of the value for the stabilization

For a beam element with constant cross-section, the follwing reduction of shear stiffness will give exact
nodal dispacements for point loadings

GAs →
GAs

1 +
GAs(h

(e))2

12EI

.

This result was derived by Richard MacNeal in 1978 (Computers & Structures, Vol. 8, pp. 175-183).
He called it residual bending flexibility.

The father of te idea on reducing shear stiffness seems to be Isaac Fried from 1973 (I. Fried, S.K. Yang,
Quarterly of Applied Mathematics, Vol. 31 pp. 303-312)

There is a close connection between the rotation bubble function and the shear stiffness reduction. This
has been proven first time by Juhani Pitkäranta in 1988 (Numerische Mathematik, Vol. 53, pp.
237-254)
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Extra: Equilibrium equations for the Timoshenko beam model

Derive the equilibrium equations of a beam model, loaded by a vertical force intensity q(x).

The force equilibrium in the vertical direction is

Q(x2)−Q(x1) +

∫ x2

x1

q(x)dx = 0,

which can be written as ∣∣∣∣x2
x1

Q(x) +

∫ x2

x1

q(x) dx = 0,

and furthemore ∫ x2

x1

(
dQ

dx
+ q

)
dx = 0.

Since the values x1 and x2 are arbitrary it can be deduced that

− dQ

dx
= q, x ∈ (0, L). (1)
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Equilibrium equations for the Timoshenko beam model (cont’d)
The moment equilibrium equation with respect to an arbitrary point x0 is

M(x1)−M(x2) +Q(x2)(x2 − x0)−Q(x1)(x1 − x0) +

∫ x2

x1

q(x)(x− x0) dx = 0,

which can be written as

−
∣∣∣∣x2
x1

M(x) +

∣∣∣∣x2
x1

Q(x)(x− x0) +

∫ x2

x1

q(x)(x− x0) dx.

Proceeding in a similar way as in the previous example gives

−
∫ x2

x1

dM

dx
dx+

∫ x2

x1

d

dx
[Q(x)(x− x0)] dx+

∫ x2

x1

q(x)(x− x0) dx = 0,

−
∫ x2

x1

dM

dx
dx+

∫ x2

x1

(
Q+ (x− x0)

dQ

dx

)
dx+

∫ x2

x1

q(x)(x− x0) dx = 0∫ x2

x1

(
Q− dM

dx

)
dx+

∫ x2

x1

(x− x0)

(
dQ

dx
− q
)

dx = 0.

Due to the vertical force equilibrium equation (1) the last integral vanishes and the moment equilibrium
equations results in

Q =
dM

dx
, from which − d2M

dx2
= q.
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Derivation of the virtual work equation from the equilibrium equations
The principle of virtual work (PVW) is equivalent to equilibrum equations and force boundary
conditions.

Equilibrium equations:

Q′ + q = 0 · δv
∫ L

0

Q−M ′ = 0 · δθ
∫ L

0

Boundary conditions, assume now that displacement v and rotation θ are given at x = 0 and force
boundary conditions:

F −Q(L) = 0 · δv(L)

M(L)−ML = 0 · δθ(L)∫ L

0

[(Q′ + q)δv + (Q−M ′)δθ]dx+ [F −Q(L)]δv(L) + [M(L)−ML]δθ(L) = 0
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Derivation of VW equation (cont’d)∫ L

0

[(Q′ + q)δv + (Q−M ′)δθ]dx+ [F −Q(L)]δv(L) + [M(L)−ML]δθ(L) = 0

Integration by parts gives∣∣∣∣L
0

Qδv −
∫ L

0

Qδv′ dx+

∫ L

0

qδv dx+

∫ L

0

Qδθ dx−
∣∣∣∣L
0

Mδθ +

∫ L

0

Mδθ′ dx+

+ [F −Q(L)]δv(L) + [M(L)−ML]δθ(L) = 0

Since v and θ are prescribed at x = 0 then δv(0) = 0 and δθ(0), after rearrangements

−
∫ L

0

[Q(δv′ − δθ)−Mδθ′] dx+

∫ L

0

qδv dx+ Fδv(L)−MLδθ(L) = 0

Remember that δv′ − δθ = δγ and −δθ′ = δκ, thus

−
∫ L

0

(Qδγ +Mδκ) dx+

∫ L

0

qδv dx+ Fδv(L)−MLδθ(L) = 0
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Next

Exercises on Thursday at 2 PM.

Coding updated Lagrangian truss element or linear Timoshenko beam element?

Next lecture, non-linear Reissner beam element. Path following algorithms.
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