FEM advanced course

Lecture 5 - Updated Lagrangian formulations, truss element

Reijo Kouhia

Tampere University, Structural Mechanics

Incremental descriptions

(1) Total Lagrangian formulation. Reference configuration is the initial configuration Ω_{0}.
(2) Updated Lagrangian formulation
(1) Reference configuration is the last equilibrium state Ω_{1}. Incrementally updated Lagrangian.
(2) Reference configuration is the state from the last iterate $\Omega_{1}^{(i)}$, weather or not it is in equilibrium. Updated Lagrangian.
(3) Eulerian formulation. Reference to the current state Ω_{2}.

Principle of virtual work (PVW)

Slight change in notation - the left subscript in tensor quantities indicates the reference state. Total Lagrangian (TL) formulation

$$
-\int_{\Omega_{0}} \delta_{0} \boldsymbol{E}:{ }_{0} S \mathrm{~d} V_{0}+\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \rho_{0} \overline{\boldsymbol{b}} \mathrm{~d} V_{0}+\int_{\partial \Omega_{t 0}} \delta \boldsymbol{u} \cdot \bar{t} \mathrm{~d} A_{0}-\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_{0} \mathrm{~d} V_{0}=0
$$

Incremental Updated Lagrangian (IL) formulation

$$
-\int_{\Omega_{1}} \delta_{1} \boldsymbol{E}:{ }_{1} S \mathrm{~d} V_{1}+\int_{\Omega_{1}} \delta \boldsymbol{u} \cdot \rho_{1} \overline{\boldsymbol{b}} \mathrm{~d} V_{1}+\int_{\partial \Omega_{t 1}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A_{1}-\int_{\Omega_{1}} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_{1} \mathrm{~d} V_{1}=0
$$

Eulerian formulation - Updated Lagrangian formulation (UL)

$$
-\int_{\Omega_{2}} \delta_{2} e:{ }_{2} \boldsymbol{\sigma} \mathrm{~d} V_{2}+\int_{\Omega_{2}} \delta \boldsymbol{u} \cdot \rho_{2} \overline{\boldsymbol{b}} \mathrm{~d} V_{2}+\int_{\partial \Omega_{t 2}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A_{2}-\int_{\Omega_{2}} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_{2} \mathrm{~d} V_{2}=0
$$

Variation or linearization of a spatial field is formally equivalent to the Lie time derivative.

Variation of the Almansi strain tensor

Variation of the Eulerian Almansi strain tensor:
(1) Apply the pull back operation to obtain a material field.

$$
{ }_{0}^{2} \boldsymbol{F}^{T}\left({ }_{2}^{2} \boldsymbol{e}\right){ }_{0}^{2} \boldsymbol{F}={ }_{0}^{2} \boldsymbol{E}, \quad \text { in the sequel } \quad \boldsymbol{F}^{T} \boldsymbol{e} \boldsymbol{F}=\boldsymbol{E} .
$$

(2) Take the variation of the material Green-Lagrange tensor

$$
\delta \boldsymbol{E}=\frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \delta \boldsymbol{H}\right)=\operatorname{sym} \delta \boldsymbol{H}^{T} \boldsymbol{F}
$$

(3) Apply the push forward operation to obtain the spatial field:

$$
\boldsymbol{F}^{-T} \delta \boldsymbol{E} \boldsymbol{F}^{-1}=\boldsymbol{F}^{-T} \frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \delta \boldsymbol{H}\right) \boldsymbol{F}^{-1}=\boldsymbol{F}^{-T} \frac{1}{2}\left[(\operatorname{Grad} \delta \boldsymbol{u})^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \operatorname{Grad} \delta \boldsymbol{u}\right] \boldsymbol{F}^{-1}
$$

Notice that the spatial gradient $\operatorname{grad} \delta \boldsymbol{u}=\operatorname{Grad} \delta \boldsymbol{u} \boldsymbol{F}^{-1}$, thus

$$
\boldsymbol{F}^{-T} \frac{1}{2}\left[(\operatorname{Grad} \delta \boldsymbol{u})^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \operatorname{Grad} \delta \boldsymbol{u}\right] \boldsymbol{F}^{-1}=\frac{1}{2}\left[(\operatorname{grad} \delta \boldsymbol{u})^{T}+\operatorname{grad} \delta \boldsymbol{u}\right]=\delta \boldsymbol{e}
$$

Internal virtual work

It has to be equivalent

$$
-\int_{\Omega_{0}} \delta_{0}^{2} \boldsymbol{E}:{ }_{0}^{2} \boldsymbol{S} \mathrm{~d} V_{0}=-\int_{\Omega_{2}} \delta_{2}^{2} \boldsymbol{e}:{ }_{2}^{2} \boldsymbol{\sigma} \mathrm{~d} V_{2}
$$

Taking into account equations

$$
{ }_{0}^{2} \boldsymbol{S}=J\left({ }_{0}^{2} \boldsymbol{F}^{-1}\right)_{2}^{2} \boldsymbol{\sigma}_{0}^{2} \boldsymbol{F}^{-T} \quad \delta_{0}^{2} \boldsymbol{E}={ }_{0}^{2} \boldsymbol{F}^{T} \delta_{2}^{2} \boldsymbol{e}_{0}^{2} \boldsymbol{F},
$$

we get

$$
-\int_{\Omega_{0}} \boldsymbol{F}^{T} \delta \boldsymbol{e} \boldsymbol{F}: \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T} J \mathrm{~d} V_{0}=-\int_{\Omega_{2}} \delta \boldsymbol{e}: \boldsymbol{\sigma} \mathrm{d} V_{2} .
$$

Internal virtual work (cont'd)

Here $\boldsymbol{F}={ }_{0}^{2} \boldsymbol{F}$ etc.
Let us look a little bit closer the term $\boldsymbol{F}^{T} \delta \boldsymbol{e} \boldsymbol{F}: \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T}$. It is easy to simplify in the index form

$$
\delta E_{K L}=F_{p K} \delta e_{p q} F_{q L}, \quad S_{K L}=J F_{K m}^{-1} \sigma_{m n} F_{L n}^{-1},
$$

the inner product is then

$$
\begin{aligned}
\delta \boldsymbol{E}: \boldsymbol{S} & =\delta E_{K L} S_{K L}=J F_{p K} \delta e_{p q} F_{q L} F_{K m}^{-1} \sigma_{m n} F_{L n}^{-1}=J \delta_{p m} \delta_{q n} \delta e_{p q} \sigma_{m n} \\
& =J \delta e_{m n} \sigma_{m n}=J \delta \boldsymbol{e}: \boldsymbol{\sigma}
\end{aligned}
$$

Linearization of the internal virtual work

In the total Lagrangian formulation

$$
\begin{equation*}
-\int_{\Omega_{0}} \delta \boldsymbol{E}: \boldsymbol{S} \mathrm{d} V \tag{1}
\end{equation*}
$$

Assuming constitutive equation in the form $\boldsymbol{S}=\mathbb{C} \boldsymbol{E}$ and we are in the displaced state \boldsymbol{u}_{1} and we try to solve the increment to obtain $\boldsymbol{u}_{2}=\boldsymbol{u}_{1}+\Delta \boldsymbol{u}$. At the configuration 1 stresses are denoted as \boldsymbol{S}_{1} and then

$$
\boldsymbol{S}_{2}=\boldsymbol{S}_{1}+\Delta \boldsymbol{S}=\boldsymbol{S}_{1}+\mathbb{C}: \Delta \boldsymbol{E},
$$

substituting it and $\delta \boldsymbol{E}, \Delta \boldsymbol{E}$ and $\boldsymbol{F}_{2}=\boldsymbol{F}_{1}+\Delta \boldsymbol{F}=\boldsymbol{F}_{1}+\Delta \boldsymbol{H}$ into the internal VW-expression (1) gives
$-\int_{\Omega_{0}} \frac{1}{2}\left[\delta \boldsymbol{H}^{T}\left(\boldsymbol{F}_{1}+\Delta \boldsymbol{H}\right)+\left(\boldsymbol{F}_{1}^{T}+\Delta \boldsymbol{H}^{T}\right) \delta \boldsymbol{H}\right]:\left(\boldsymbol{S}_{1}+\mathbb{C}: \frac{1}{2}\left[\Delta \boldsymbol{H}^{T}\left(\boldsymbol{F}_{1}+\Delta \boldsymbol{H}\right)+\left(\boldsymbol{F}_{1}^{T}+\Delta \boldsymbol{H}\right) \Delta \boldsymbol{H}\right]\right) \mathrm{d} V$

Linearization of the internal virtual work - updated formulation

Since

$$
\delta \boldsymbol{e}=\frac{1}{2}\left[(\operatorname{grad} \delta \boldsymbol{u})^{T}+\operatorname{grad} \delta \boldsymbol{u}\right]=\frac{1}{2}\left(\delta \boldsymbol{h}^{T}+\delta \boldsymbol{h}\right)=\operatorname{sym} \delta \boldsymbol{h},
$$

also

$$
\Delta \boldsymbol{e}=\frac{1}{2}\left[(\operatorname{grad} \Delta \boldsymbol{u})^{T}+\operatorname{grad} \Delta \boldsymbol{u}\right]=\frac{1}{2}\left(\Delta \boldsymbol{h}^{T}+\Delta \boldsymbol{h}\right)=\operatorname{sym} \Delta \boldsymbol{h},
$$

Starting from

$$
\begin{equation*}
\Delta\left(-\int_{\Omega_{0}} \delta \boldsymbol{E}: \boldsymbol{S} \mathrm{d} V\right)=-\int_{\Omega_{0}}[\delta \boldsymbol{E}: \Delta \boldsymbol{S}+\Delta(\delta \boldsymbol{E}): \boldsymbol{S}] \mathrm{d} V \tag{3}
\end{equation*}
$$

applying push forward (contravariant tensor) to the term $\Delta \boldsymbol{S}=\mathbb{C}: \Delta \boldsymbol{E}$, and $\Delta \boldsymbol{E}=\operatorname{sym}\left(\boldsymbol{F}^{T} \operatorname{Grad} \Delta \boldsymbol{u}\right)$ we get

$$
\Delta \boldsymbol{\tau}=\boldsymbol{F} \Delta \boldsymbol{S} \boldsymbol{F}^{T}=\boldsymbol{F}\left(\mathbb{C}: \boldsymbol{F}^{T} \operatorname{Grad} \Delta \boldsymbol{u}\right) \boldsymbol{F}^{T}=\boldsymbol{F}\left(\mathbb{C}: \boldsymbol{F}^{T} \operatorname{grad} \Delta \boldsymbol{u} \boldsymbol{F}\right) \boldsymbol{F}^{T}
$$

where the minor symmetries of \mathbb{C} is taken into account.

Linearization of the internal virtual work - updated formulation (cont'd)

The stress increment

$$
\Delta \boldsymbol{\tau}=\boldsymbol{F} \Delta \boldsymbol{S} \boldsymbol{F}^{T}=\boldsymbol{F}\left(\mathbb{C}: \boldsymbol{F}^{T} \operatorname{grad} \Delta \boldsymbol{u} \boldsymbol{F}\right) \boldsymbol{F}^{T}
$$

can be put in the form

$$
\begin{equation*}
\Delta \boldsymbol{\tau}=J \mathbb{C}: \operatorname{grad} \Delta \boldsymbol{u}, \tag{4}
\end{equation*}
$$

where the spatial constitutive tensor \mathbb{C} is

$$
c_{i j k l}=J^{-1} F_{i M} F_{j N} F_{k P} F_{l Q} C_{M N P Q} .
$$

Linearization of the internal virtual work - updated formulation (cont'd)

The second term in

$$
-\int_{\Omega_{0}}[\delta \boldsymbol{E}: \Delta \boldsymbol{S}+\Delta(\delta \boldsymbol{E}): \boldsymbol{S}] \mathrm{d} V
$$

is easy, just applying push forward to covariant tensor $\Delta(\delta \boldsymbol{E})$ and contravariant S and noticing that $\Delta \delta \boldsymbol{e}=\operatorname{sym}\left[(\operatorname{grad} \delta \boldsymbol{u})^{T} \operatorname{grad} \Delta \boldsymbol{u}\right]$

$$
\begin{aligned}
-\int_{\Omega_{0}} \boldsymbol{F}^{-T} \Delta(\delta \boldsymbol{E}) \boldsymbol{F}^{-1}: \boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{T} \mathrm{~d} V=-\int_{\Omega_{0}} \Delta(\delta \boldsymbol{e}): \boldsymbol{\tau} \mathrm{d} V=- & \int_{\Omega_{2}} \Delta(\delta \boldsymbol{e}): \boldsymbol{\sigma} \mathrm{d} V_{2} \\
& =-\int_{\Omega_{2}} \operatorname{grad} \delta \boldsymbol{u}: \operatorname{grad} \Delta \boldsymbol{u} \boldsymbol{\sigma} \mathrm{d} V_{2}
\end{aligned}
$$

and taking (4) into account, the linearization of the internal virtual work in the spatial description is

$$
-\int_{\Omega_{2}}(\operatorname{grad} \delta \boldsymbol{u}: \mathbb{C}: \operatorname{grad} \Delta \boldsymbol{u}+\operatorname{grad} \delta \boldsymbol{u}: \operatorname{grad} \Delta \boldsymbol{u} \boldsymbol{\sigma}) \mathrm{d} V_{2}
$$

Linearization of the internal virtual work - incremental updated formulation

 Reference state the configuration Ω_{1}.

Notice that

$$
{ }_{0}^{2} \boldsymbol{F}=\Delta_{1}^{2} \boldsymbol{F}\left({ }_{0}^{1} \boldsymbol{F}\right)
$$

We need

$$
{ }_{1}^{2} \boldsymbol{S}={ }_{1}^{1} \boldsymbol{\sigma}+\Delta_{1}^{2} \boldsymbol{S}={ }_{1}^{1} \boldsymbol{\sigma}+{ }_{1}^{2} \mathbb{C}: \Delta_{1}^{2} \boldsymbol{E},
$$

Incremental updated formulation (cont'd)

Incremental updated Lagrangian approach is quite similar to the TL approach, however, some modifications needed.
(1) After every step the stresses ${ }_{1}^{2} S$ has to be transformed to Cauchy stresses

$$
{ }_{2}^{2} \boldsymbol{\sigma}=J^{-1} \Delta_{1}^{2} \boldsymbol{F}_{1}^{2} \boldsymbol{S}_{1}^{2} \Delta \boldsymbol{F}^{T}
$$

(3) Constitutive operator need to be transformed (similar to Eulerian approach), but with respect to the configuration 1

$$
{ }_{1}^{2} C_{i j k l}=\left(J^{-1}\right)\left({ }_{0}^{1} F_{i M}\right)\left({ }_{0}^{1} F_{j N}\right)\left({ }_{0}^{1} F_{k P}\right)\left({ }_{0}^{1} F_{l Q}\right){ }_{0}^{2} C_{M N P Q},
$$

where $J=\operatorname{det}\left({ }_{0}^{1} \boldsymbol{F}\right)$.

Truss element in 1, 2 and 3-D

Professor emeritus Steen Krenk has presented an elegant formulation for a truss element in his book Non-linear modeling and analysis of solids and structures, Cambridge University Press 2009.

Two nodes A and B having coordinates \boldsymbol{x}_{A} and \boldsymbol{x}_{B} in the current state. Initial positions are \boldsymbol{X}_{A} and \boldsymbol{X}_{B}. Vectors connection points A and B are

$$
\boldsymbol{X}=\boldsymbol{X}_{B}-\boldsymbol{X}_{A}, \quad \text { and } \quad \boldsymbol{x}=\boldsymbol{x}_{B}-\boldsymbol{x}_{A},
$$

and the length of an element in the initial ℓ_{0} and deformed configurations ℓ are

$$
\ell_{0}^{2}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}, \quad \text { and } \quad \ell^{2}=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}
$$

Displacements at nodes A and B are denoted as \boldsymbol{u}_{A} and \boldsymbol{u}_{B} respectively and $\boldsymbol{u}=\boldsymbol{u}_{B}-\boldsymbol{u}_{A}$, then $\boldsymbol{x}=\boldsymbol{X}+\boldsymbol{u}$ and

$$
\ell^{2}=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}=(\boldsymbol{X}+\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{X}+\boldsymbol{u})
$$

The Green-Lagrange strain is easily computed as (now ε is used for the GL strain)

$$
\varepsilon=\frac{\ell^{2}-\ell_{0}^{2}}{2 \ell_{0}^{2}}=\frac{1}{\ell_{0}^{2}}\left(\boldsymbol{X}+\frac{1}{2} \boldsymbol{u}\right)^{\mathrm{T}} \boldsymbol{u}=\frac{1}{\ell_{0}^{2}} \frac{1}{2}(\boldsymbol{X}+\boldsymbol{X}+\boldsymbol{u})^{\mathrm{T}} \boldsymbol{u}=\frac{1}{\ell_{0}^{2}} \frac{1}{2}(\boldsymbol{X}+\boldsymbol{x})^{\mathrm{T}} \boldsymbol{u}=\frac{1}{\ell_{0}^{2}} \boldsymbol{x}_{1 / 2}^{\mathrm{T}} \boldsymbol{u}
$$

Truss element in 1, 2 and 3-D (cont'd)

The virtual strain is

$$
\delta \varepsilon=\frac{1}{\ell_{0}^{2}}(\boldsymbol{X}+\boldsymbol{u})^{\mathrm{T}} \delta \boldsymbol{u}=\frac{1}{\ell_{0}^{2}} \boldsymbol{x}^{\mathrm{T}} \delta \boldsymbol{u}
$$

and the virtual work equation takes the form (element contribution)

$$
\begin{aligned}
& \delta W=-\int_{0}^{\ell_{0}} N \delta \varepsilon \mathrm{~d} s+\boldsymbol{p}_{A} \delta \boldsymbol{u}_{A}+\boldsymbol{p}_{B} \delta \boldsymbol{u}_{B} \\
&=-\int_{0}^{\ell_{0}} \frac{1}{\ell_{0}^{2}}\left(N \boldsymbol{x}^{\mathrm{T}}\right)\left(\delta \boldsymbol{u}_{B}-\delta \boldsymbol{u}_{A}\right) \mathrm{d} s+\boldsymbol{p}_{A} \delta \boldsymbol{u}_{A}+\boldsymbol{p}_{B} \delta \boldsymbol{u}_{B} \\
&=\delta \boldsymbol{u}_{A}^{\mathrm{T}}\left(\int_{0}^{\ell_{0}} \frac{1}{\ell_{0}^{2}}(N \boldsymbol{x}) \mathrm{d} s+\boldsymbol{p}_{A}\right)+\delta \boldsymbol{u}_{B}^{\mathrm{T}}\left(-\int_{0}^{\ell_{0}} \frac{1}{\ell_{0}^{2}}(N \boldsymbol{x}) \mathrm{d} s+\boldsymbol{p}_{B}\right)=0 \\
& \Rightarrow \quad \boldsymbol{p}_{A}=-\frac{1}{\ell_{0}} N \boldsymbol{x}, \quad \boldsymbol{p}_{B}=\frac{1}{\ell_{0}} N \boldsymbol{x}
\end{aligned}
$$

and the internal forces are

$$
\boldsymbol{r}_{A}=-\frac{1}{\ell_{0}} N \boldsymbol{x}, \quad \boldsymbol{r}_{B}=\frac{1}{\ell_{0}} N \boldsymbol{x}
$$

Truss element in 1, 2 and 3-D (cont'd)

Assuming the constitutive equation

$$
N=E A_{0} \varepsilon
$$

then the internal forces are

$$
\boldsymbol{r}_{A}=-E A_{0} \varepsilon \frac{\boldsymbol{x}}{\ell_{0}}, \quad \boldsymbol{r}_{B}=E A_{0} \varepsilon \frac{\boldsymbol{x}}{\ell_{0}}
$$

Notation:

$$
\tilde{\boldsymbol{X}}=\binom{\boldsymbol{X}_{A}}{\boldsymbol{X}_{B}}, \quad \tilde{\boldsymbol{x}}=\binom{\boldsymbol{x}_{A}}{\boldsymbol{x}_{B}}, \quad \tilde{\boldsymbol{u}}=\binom{\boldsymbol{u}_{A}}{\boldsymbol{u}_{B}}, \quad \tilde{\boldsymbol{r}}=\binom{\boldsymbol{r}_{A}}{\boldsymbol{r}_{B}} .
$$

The initial element length is

$$
\ell_{0}^{2}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=\tilde{\boldsymbol{X}}^{\mathrm{T}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{X}}
$$

and the Green-Lagrange strain can be written as

$$
\varepsilon=\frac{1}{\ell_{0}^{2}} \frac{1}{2}(\tilde{\boldsymbol{X}}+\tilde{\boldsymbol{x}})^{\mathrm{T}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{u}}
$$

and the virtual strain takes the form

$$
\delta \varepsilon=\frac{1}{\ell_{0}^{2}} \tilde{\boldsymbol{x}}^{\mathrm{T}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \delta \tilde{\boldsymbol{u}} .
$$

Truss element in 1, 2 and 3-D (cont'd)

The internal forces have the expressions

$$
\tilde{r}=\frac{N}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{x}}=\frac{E A_{0} \varepsilon}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{x}} .
$$

Notice that the strain and internal force are non-linear functions of displacements.

Linearization.

$$
\Delta \tilde{\boldsymbol{r}}=\frac{\Delta N}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{x}}+\frac{N}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \Delta \tilde{\boldsymbol{x}}=\frac{E A_{0} \Delta \varepsilon}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{x}}+\frac{N}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \Delta \tilde{\boldsymbol{u}} .
$$

From the previous slide

$$
\Delta \varepsilon=\frac{1}{\ell_{0}^{2}} \tilde{\boldsymbol{x}}^{\mathrm{T}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \Delta \tilde{\boldsymbol{u}} .
$$

Truss element in 1, 2 and 3-D (cont'd)

Inserting $\Delta \varepsilon$ to the increment of the internal force we get

$$
\Delta \tilde{\boldsymbol{r}}=\left(\frac{E A_{0}}{\ell_{0}^{3}}\left(\begin{array}{cc}
\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} & -\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \\
-\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} & \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}}
\end{array}\right)+\frac{N}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right)\right) \Delta \tilde{\boldsymbol{u}}=\boldsymbol{K} \Delta \tilde{\boldsymbol{u}} .
$$

The Jacobian matrix \boldsymbol{K} is often called also as the tangent stiffness matrix, and it can be decomposed into three parts

$$
\begin{aligned}
\boldsymbol{K}_{0} & =\frac{E A_{0}}{\ell_{0}^{3}}\left(\begin{array}{cc}
\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} & -\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} \\
-\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} & \boldsymbol{X} \boldsymbol{X}^{\mathrm{T}}
\end{array}\right) \\
\boldsymbol{K}_{u} & =\frac{E A_{0}}{\ell_{0}^{3}}\left(\begin{array}{cc}
\boldsymbol{X} \boldsymbol{u}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{X}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}} & -\left(\boldsymbol{X} \boldsymbol{u}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{X}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \\
-\left(\boldsymbol{X} \boldsymbol{u}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{X}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) & \boldsymbol{X} \boldsymbol{u}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{X}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}
\end{array}\right) \\
\boldsymbol{K}_{\sigma} & =\frac{N}{\ell_{0}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right)
\end{aligned}
$$

Algorithm for total Lagrangian formulation of a truss element

Load steps $n=1,2, \ldots, n_{\text {max }}$

- Increment load $\boldsymbol{p}_{n}=\boldsymbol{p}_{n-1}+\Delta \boldsymbol{p}_{n}$ and set $\boldsymbol{q}_{n}^{(0)}=\boldsymbol{q}_{n-1}$
- Iterate $i=0,1,2, \ldots, i_{\text {max }}$
- In each element extract \boldsymbol{u} from \boldsymbol{q} and compute $\boldsymbol{x}=\boldsymbol{X}+\boldsymbol{u}$ and strains

$$
\varepsilon_{n}^{(i)}=\frac{1}{\ell_{0}^{2}} \frac{1}{2}(\tilde{\boldsymbol{X}}+\tilde{\boldsymbol{x}})^{\mathrm{T}}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{u}}_{n}^{(i)}
$$

- Compute internal force vector from element contributions

$$
\tilde{\boldsymbol{r}}=\frac{E A_{0}}{\ell_{0}} \varepsilon_{n}^{(i)}\left(\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{I} \\
-\boldsymbol{I} & \boldsymbol{I}
\end{array}\right) \tilde{\boldsymbol{x}}_{n}^{(i)}
$$

- Assemble the global stiffness matrix $\boldsymbol{K}_{n}^{(i)}=\boldsymbol{K}_{0}(\boldsymbol{X})+\boldsymbol{K}_{u}\left(\boldsymbol{X}, \boldsymbol{u}_{n}^{(i)}\right)+\boldsymbol{K}_{\sigma}\left(\varepsilon_{n}^{(i)}\right)$,
- Compute the global residual force $\boldsymbol{f}_{n}^{(i)}=\boldsymbol{r}_{n}^{(i)}-\boldsymbol{p}_{n}$
- Solve the linearized system $\boldsymbol{K}_{n}^{(i)} \delta \boldsymbol{q}_{n}^{(i)}=\boldsymbol{f}_{n}^{(i)}$, notice: δ symbol here means the iterative change!
- Update global displacement vector $\boldsymbol{q}_{n}^{i+1}=\boldsymbol{q}_{n}^{(i)}-\delta \boldsymbol{q}_{n}^{(i)}$

Next

Exercises on Thursday.

Coding 1,2 and 3-D (same code) total Lagrangian truss element.
Next lecture, truss element with updated Lagrangian formulation, 2-D Reissner beam.

