FEM advanced course

Lecture 4 - Objective time rates, total- and updated Lagrangian formulations

Reijo Kouhia

Tampere University, Structural Mechanics

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Objectivity

Motivation: Material properties must be invariant under changes of observers.

Observer in the Euclidean space is equipped to measure

- In the second second
- Instants of time.

An event is noticed by an observer in terms of position x and time t.

Figure 5.1 from G.A. Holzapfel, Nonlinear Solid Mechanics, John Wiley & Sons, 2000.

A spatial mapping satisfying these requirements can be represented by transformation

$$\boldsymbol{x}^{+} - \boldsymbol{x}_{0} = \boldsymbol{Q}(t)(\boldsymbol{x} - \boldsymbol{x}_{0}),$$

with a proper orthogonal tensor ${oldsymbol Q}(t).$ The transformation can be written as

$$x^{+} = c(t) + Q(t)x, \quad t^{+} = t + t_{0}^{+} - t_{0}$$

イロト 不得下 不足下 不足下 一足

Change of observer

A frame is a rigid reference system from which we observe a position x of a certain object at a certain time t. A frame may therefore be called an observer.

Same event is recorded

- In frame \mathcal{F} we record (\boldsymbol{x}, t) .
- In frame \mathcal{F}^+ we record (\boldsymbol{x}^+,t^+) . For simplicity assume $t^+=t$.

In frame ${\mathcal F}$ and frame ${\mathcal F}^+$, the coordinates of the same particle are related as

$$\boldsymbol{x}^+ = \boldsymbol{Q}(t)\boldsymbol{x} + \boldsymbol{c}(t)$$

where $\boldsymbol{Q}^T = \boldsymbol{Q}^{-1}$ and det $\boldsymbol{Q} = 1$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Objective tensors

Tensors that transform in a similar manner when the frame is changed as when the coordinate system is changed are called *objective tensors*.

Definition of objective tensors

$$f^{+} = f$$

$$b^{+} = Qb$$

$$T^{+} = QTQ^{T}$$

objective scalar objective vector objective second-order tensor

Definition of invariant objective tensors

$f^+ = f$	invariant objective scalar
$\boldsymbol{b}^+ = \boldsymbol{b}$	invariant objective vector
$T^+ = T$	invariant objective second-order tensor

・ロト ・同ト ・ヨト ・ヨト 一日

Objectivity of deformation gradient F?

- ullet In frame ${\mathcal F}$ we have motion ${m x}={m arphi}({m X},t)$, and
- in frame \mathcal{F}^+ we have motion $oldsymbol{x}^+ = oldsymbol{arphi}^+(oldsymbol{X},t).$

Now the deformation gradients recorded by the two frames are

$$m{F}=rac{\partialm{arphi}}{\partialm{X}}$$
 and $m{F}^+=rac{\partialm{arphi}^+}{\partialm{X}}$

and the motions are related as $oldsymbol{x}^+ = oldsymbol{Q} oldsymbol{x} + oldsymbol{c}$, then

$$oldsymbol{F}^+ = rac{\partial oldsymbol{x}^+}{\partial oldsymbol{X}} = rac{\partial oldsymbol{x}^+}{\partial oldsymbol{x}} rac{\partial oldsymbol{x}^+}{\partial oldsymbol{X}} = oldsymbol{Q} oldsymbol{F}.$$

Deformation gradient is a two-point tensor having one base (E_K) in the material coordinate system and one in the spatial coordinate system (e_m)

$$\boldsymbol{F} = \frac{\partial \varphi_i}{\partial X_J} \boldsymbol{e}_i \otimes \boldsymbol{E}_J,$$

and thus transforms like a vector and can be considered as objective.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Objectivity of some quantities

- The Jacobian $J = \det F$ is objective.
- C, E, U are invariant objective.
- The rate of deformation tensor *d* is objective.
- The spin tensor w is **not objective**.
- The traction vector t is assumed to be objective thus the Cauchy stress σ is objective.
- The PK2 stress tensor \boldsymbol{S} is invariant objective.
- The material time rate of the GL strain tensor \dot{E} is invariant objective.

-

The material time derivatice of the Cauchy stress tensor

The Cauchy stress tensor σ is objective, thus $\sigma^+ = Q \sigma Q^T$.

What about its material time derivative?

$$\frac{\mathrm{D}\boldsymbol{\sigma}^{+}}{\mathrm{D}t} = \frac{\mathrm{D}\boldsymbol{Q}}{\mathrm{D}t}\boldsymbol{\sigma}\boldsymbol{Q}^{T} + \boldsymbol{Q}\frac{\mathrm{D}\boldsymbol{\sigma}}{\mathrm{D}t}\boldsymbol{Q}^{T} + \boldsymbol{Q}\boldsymbol{\sigma}\frac{\mathrm{D}\boldsymbol{Q}^{T}}{\mathrm{D}t}.$$

Clearly the material time rate of the Cauchy stress tensor is not objective.

イロン 不同と イヨン イヨン

Objective stress rates

Starting from the material time rate of the Cauchy stress

$$\dot{\boldsymbol{\sigma}}^{+}=\dot{\boldsymbol{Q}}\boldsymbol{\sigma}\,\boldsymbol{Q}^{T}+\boldsymbol{Q}\dot{\boldsymbol{\sigma}}\,\boldsymbol{Q}^{T}+\boldsymbol{Q}\boldsymbol{\sigma}\,\dot{\boldsymbol{Q}}^{T}$$

and taking into account that

$$\boldsymbol{w}^+ = \dot{\boldsymbol{Q}} \boldsymbol{Q}^T + \boldsymbol{Q} \boldsymbol{w} \boldsymbol{Q}^T \quad \Rightarrow \quad \dot{\boldsymbol{Q}} = \boldsymbol{w}^+ \boldsymbol{Q} - \boldsymbol{Q} \boldsymbol{w}.$$

Substituting it back

$$\dot{\sigma}^{+} = Q\dot{\sigma}Q^{T} + (w^{+}Q - Qw)\sigma Q^{T} + Q\sigma(w^{+}Q - Qw)^{T}$$
$$= Q\dot{\sigma}Q^{T} + w^{+}Q\sigma Q^{T} - Qw\sigma Q^{T} + Q\sigma Q^{T}(w^{+})^{T} - Q\sigma w^{T}Q^{T}$$
$$\dot{\sigma}^{+} - w^{+}\sigma^{+} - \sigma^{+}(w^{+})^{T} = Q\dot{\sigma}Q^{T} - Qw\sigma Q^{T} - Q\sigma w^{T}Q^{T} = Q(\dot{\sigma} - w\sigma - \sigma w^{T})Q^{T}.$$

Define $\overset{\circ}{\boldsymbol{\sigma}} = \boldsymbol{\dot{\sigma}} - \boldsymbol{w}\boldsymbol{\sigma} - \sigma \boldsymbol{w}^T$ then

$$\overset{\,\,{}_\circ}{\sigma}^+ = Q \overset{\,\,{}_\circ}{\sigma} Q^T$$

is an objective rate of the Cauchy stress known as the Jaumann-Zaremba rate of the Cauchy stress. It is also called as co-rotational rate.

イロン 不得 とくほど 不良 とうほう

Objective stress rates (cont'd)

The Jaumann-Zaremba rate is very much used in large strain plasticity computations and many commercial FE programs use it in their implementation

$$\overset{\mathrm{o}}{{\pmb{\sigma}}} = \mathbb{C}^{\mathrm{e}} : ({\pmb{d}} - {\pmb{d}}^{\mathrm{p}})$$

However, it has some shortcomings which was observed by J.K. Dienes in 1979 (*Acta Mechanica*, Vol 32, pp. 217-232).

E.g. in simple shear $x_1 = X_1 + (t/t_0)X_2$, $x_2 = X_2$, $x_3 = X_3$ the solution for hypoelastic $\overset{\circ}{\sigma} = \mathbb{C}^e : d$ produces oscillating solution

$$\sigma_{12} = G \sin(t/t_0),$$

$$\sigma_{11} = G(1 - \cos(t/t_0)),$$

$$\sigma_{22} = G(\cos(t/t_0) - 1),$$

where G is the shear modulus.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Objective stress rates (cont'd)

There are many other objective time rates, like (hear given as stress rates)

- $Oldroyd rate \qquad \qquad \stackrel{\nabla}{\sigma} = \dot{\sigma} l\sigma \sigma l^T.$
- Cotter-Rivlin rate $\overset{\triangle}{\sigma} = \dot{\sigma} + l^T \sigma + \sigma l.$
- Truesdell rate $\overset{*}{\sigma} = \dot{\sigma} l\sigma \sigma l^T + \sigma \mathrm{tr} d.$
- Green-McInnis-Naghdi $\vec{\sigma} = \dot{\sigma} \dot{R}R^T \sigma + \sigma \dot{R}R^T$.

3

Incremental descriptions

- **(**) Total Lagrangian formulation. Reference configuration is the initial configuration Ω_0 .
- Opdated Lagrangian formulation
 - **③** Reference configuration is the last equilibrium state Ω_1 .
 - **9** Reference configuration is the state from the last iterate $\Omega_1^{(i)}$, weather or not it is in equilibrium.

③ Eulerian formulation. Reference to the current state Ω_2 .

Principle of virtual work (PVW)

Total Lagrangian (TL) formulation

$$-\int_{\Omega_0} \delta \boldsymbol{E}_0 : \boldsymbol{S}_0 \, \mathrm{d} \boldsymbol{V}_0 + \int_{\Omega_0} \delta \boldsymbol{u} \cdot \rho_0 \, \bar{\boldsymbol{b}} \, \mathrm{d} \boldsymbol{V}_0 + \int_{\partial \Omega_{t0}} \delta \boldsymbol{u} \cdot \bar{\boldsymbol{t}} \, \mathrm{d} A_0 - \int_{\Omega_0} \delta \boldsymbol{u} \cdot \boldsymbol{\ddot{u}} \rho_0 \, \mathrm{d} \boldsymbol{V}_0 = 0$$

Updated Lagrangian (UL) formulation

$$-\int_{\Omega_1} \delta \boldsymbol{E}_1 : \boldsymbol{S}_1 \, \mathrm{d} \boldsymbol{V}_1 + \int_{\Omega_1} \delta \boldsymbol{u} \cdot \rho_1 \, \bar{\boldsymbol{b}} \, \mathrm{d} \boldsymbol{V}_1 + \int_{\partial \Omega_{t1}} \delta \boldsymbol{u} \cdot \bar{\boldsymbol{t}} \, \mathrm{d} A_1 - \int_{\Omega_1} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_1 \, \mathrm{d} \boldsymbol{V}_1 = 0$$

Eulerian formulation

$$-\int_{\Omega_2} \delta \boldsymbol{e} : \boldsymbol{\sigma} \, \mathrm{d}V_2 + \int_{\Omega_2} \delta \boldsymbol{u} \cdot \rho_2 \bar{\boldsymbol{b}} \, \mathrm{d}V_2 + \int_{\partial \Omega_{t2}} \delta \boldsymbol{u} \cdot \bar{\boldsymbol{t}} \, \mathrm{d}A_2 - \int_{\Omega_2} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_2 \, \mathrm{d}V_2 = 0$$

Variation or linearization of a spatial field is formally equivalent to the Lie time derivative.

э.

ヘロト 人間 とくほ とくほとう

Variation of the Almansi strain tensor

Variation of the Eulerian Almansi strain tensor:

Apply the pull back operation to obtain a material field.

$$F^T eF = E$$

O Take the variation of the material Green-Lagrange tensor

$$\delta \boldsymbol{E} = \frac{1}{2} (\delta \boldsymbol{H}^T \boldsymbol{F} + \boldsymbol{F}^T \delta \boldsymbol{H}) = \operatorname{sym} \delta \boldsymbol{H}^T \boldsymbol{F}$$

O Apply the push forward operation to obtain the spatial field:

$$\boldsymbol{F}^{-T}\delta\boldsymbol{E}\boldsymbol{F}^{-1} = \boldsymbol{F}^{-T}\frac{1}{2}(\delta\boldsymbol{H}^{T}\boldsymbol{F} + \boldsymbol{F}^{T}\delta\boldsymbol{H})\boldsymbol{F}^{-1} = \boldsymbol{F}^{-T}\frac{1}{2}[(\mathrm{Grad}\delta\boldsymbol{u})^{T}\boldsymbol{F} + \boldsymbol{F}^{T}\mathrm{Grad}\delta\boldsymbol{u}]\boldsymbol{F}^{-1}$$

Notice that the spatial gradient $\operatorname{grad} \delta u = \operatorname{Grad} \delta u F^{-1}$, thus

$$\boldsymbol{F}^{-T} \frac{1}{2} [(\operatorname{Grad} \delta \boldsymbol{u})^T \boldsymbol{F} + \boldsymbol{F}^T \operatorname{Grad} \delta \boldsymbol{u}] \boldsymbol{F}^{-1} = \frac{1}{2} [(\operatorname{grad} \delta \boldsymbol{u})^T + \operatorname{grad} \delta \boldsymbol{u}].$$

3

イロン 不同と 不同と 不同と

Internal virtual work

It has to be equivalent

$$-\int_{\Omega_0} \delta \boldsymbol{E}_0 : \boldsymbol{S}_0 \, \mathrm{d} \boldsymbol{V}_0 = -\int_{\Omega_2} \delta \boldsymbol{e} : \boldsymbol{\sigma} \, \mathrm{d} \boldsymbol{V}_2$$

Taking into account equations

$$\boldsymbol{S}_0 = J \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T} \quad \delta \boldsymbol{E}_0 = \boldsymbol{F}^T \delta \boldsymbol{e} \boldsymbol{F},$$

we get

$$-\int_{\Omega_0} \boldsymbol{F}^T \delta \boldsymbol{e} \boldsymbol{F} : \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T} J \mathrm{d} V_0 = -\int_{\Omega_2} \delta \boldsymbol{e} : \boldsymbol{\sigma} \mathrm{d} V_2.$$

3

イロト イポト イヨト イヨト

Internal virtual work (cont'd)

Let us look a little bit closer the term $\mathbf{F}^T \delta \mathbf{e} \mathbf{F} : \mathbf{F}^{-1} \boldsymbol{\sigma} \mathbf{F}^{-T}$. It is easy to simplify in the index form

$$\delta E_{KL} = F_{pK} \delta e_{pq} F_{qL}, \qquad S_{KL} = J F_{Km}^{-1} \sigma_{mn} F_{Ln}^{-1},$$

the inner product is then

$$\delta \boldsymbol{E} : \boldsymbol{S} = \delta E_{KL} S_{KL} = J F_{pK} \delta e_{pq} F_{qL} F_{Km}^{-1} \sigma_{mn} F_{Ln}^{-1} = J \delta_{pm} \delta_{qn} \delta e_{pq} \sigma_{mn}$$
$$= J \delta e_{mn} \sigma_{mn} = J \delta \boldsymbol{e} : \boldsymbol{\sigma}$$

3

イロト 不同ト 不同ト 不同ト

Linearization of the internal virtual work

In the total Lagrangian formulation

$$-\int_{\Omega_0} \delta \boldsymbol{E} : \boldsymbol{S} \, \mathrm{d} V \tag{1}$$

Assuming constitutive equation in the form $S = \mathbb{C}E$ and we are in the displaced state u_1 and we try to solve the increment to obtain $u_2 = u_1 + \Delta u$. At the configuration 1 stresses are denoted as S_1 and then

$$oldsymbol{S}_2 = oldsymbol{S}_1 + \Delta oldsymbol{S} = oldsymbol{S}_1 + \mathbb{C} \Delta oldsymbol{E},$$

substituting it and δE , ΔE and $F_2 = F_1 + \Delta F = F_1 + \Delta H$ into the internal VW-expression (1) gives

$$-\int_{\Omega_0} \frac{1}{2} [\delta \boldsymbol{H}^T (\boldsymbol{F}_1 + \Delta \boldsymbol{H}) + (\boldsymbol{F}_1^T + \Delta \boldsymbol{H}^T) \delta \boldsymbol{H}] : (\boldsymbol{S}_1 + \mathbb{C} \frac{1}{2} [\Delta \boldsymbol{H}^T (\boldsymbol{F}_1 + \Delta \boldsymbol{H}) + (\boldsymbol{F}_1^T + \Delta \boldsymbol{H}) \Delta \boldsymbol{H}]) \, \mathrm{d} \boldsymbol{V}$$
(2)

イロン 不同と 不同と 不同と

About programming

How to set up IEN, ID and LM arrays.

- IEN(L,E) = global node number of local node L of an element E.
- ID(I,N) = global DOF number of local DOF I at global node N.
- LM(J) = Location Matrix, gives the global DOF of a local node J for element E.

LM array is redundant, it is not necessarily needed, it can be constructed from IEN and ID.

イロン 不得 とくほど 不良 とうほう

Next

Lecture.

Linearization of the internal virtual work + 1,2,3 D truss element.

Exercises on Thursday.

Numerical integration, code structure for element and internal force vector computations, quadratic isoparametric bar element.

<ロ> (四) (四) (三) (三) (三) (三)