FEM advanced course

Lecture 4 - Objective time rates, total- and updated Lagrangian formulations

Reijo Kouhia

Tampere University, Structural Mechanics

Objectivity

Motivation: Material properties must be invariant under changes of observers.
Observer in the Euclidean space is equipped to measure
(1) relative positions of points in space, and
(2) instants of time.

An event is noticed by an observer in terms of position \boldsymbol{x} and time t.

Figure 5.1 from G.A. Holzapfel, Nonlinear Solid Mechanics, John Wiley \& Sons, 2000.

A spatial mapping satisfying these requirements can be represented by transformation

$$
\boldsymbol{x}^{+}-\boldsymbol{x}_{0}=\boldsymbol{Q}(t)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right),
$$

with a proper orthogonal tensor $\boldsymbol{Q}(t)$. The transformation can be written as

$$
\boldsymbol{x}^{+}=\boldsymbol{c}(t)+\boldsymbol{Q}(t) \boldsymbol{x}, \quad t^{+}=t+t_{0}^{+}-t_{0} .
$$

Change of observer

A frame is a rigid reference system from which we observe a a position x of a certain object at a certain time t. A frame may therefore be called an observer.

Same event is recorded

- In frame \mathcal{F} we record (\boldsymbol{x}, t).
- In frame \mathcal{F}^{+}we record $\left(\boldsymbol{x}^{+}, t^{+}\right)$. For simplicity assume $t^{+}=t$.

In frame \mathcal{F} and frame \mathcal{F}^{+}, the coordinates of the same particle are related as

$$
\boldsymbol{x}^{+}=\boldsymbol{Q}(t) \boldsymbol{x}+\boldsymbol{c}(t),
$$

where $\boldsymbol{Q}^{T}=\boldsymbol{Q}^{-1}$ and $\operatorname{det} \boldsymbol{Q}=1$.

Objective tensors

Tensors that transform in a similar manner when the frame is changed as when the coordinate system is changed are called objective tensors.

Definition of objective tensors

$$
\begin{aligned}
f^{+} & =f \\
\boldsymbol{b}^{+} & =\boldsymbol{Q} \boldsymbol{b} \\
\boldsymbol{T}^{+} & =\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{T}
\end{aligned}
$$

objective scalar
objective vector
objective second-order tensor

Definition of invariant objective tensors

$$
\begin{aligned}
f^{+} & =f \\
\boldsymbol{b}^{+} & =\boldsymbol{b} \\
\boldsymbol{T}^{+} & =\boldsymbol{T}
\end{aligned}
$$

invariant objective scalar
invariant objective vector
invariant objective second-order tensor

Objectivity of deformation gradient \boldsymbol{F} ?

- In frame \mathcal{F} we have motion $\boldsymbol{x}=\boldsymbol{\varphi}(\boldsymbol{X}, t)$, and
- in frame \mathcal{F}^{+}we have motion $\boldsymbol{x}^{+}=\varphi^{+}(\boldsymbol{X}, t)$.

Now the deformation gradients recorded by the two frames are

$$
\boldsymbol{F}=\frac{\partial \varphi}{\partial \boldsymbol{X}} \quad \text { and } \quad \boldsymbol{F}^{+}=\frac{\partial \boldsymbol{\varphi}^{+}}{\partial \boldsymbol{X}}
$$

and the motions are related as $\boldsymbol{x}^{+}=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}$, then

$$
\boldsymbol{F}^{+}=\frac{\partial \boldsymbol{x}^{+}}{\partial \boldsymbol{X}}=\frac{\partial \boldsymbol{x}^{+}}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{X}}=\boldsymbol{Q} \boldsymbol{F}
$$

Deformation gradient is a two-point tensor having one base $\left(\boldsymbol{E}_{K}\right)$ in the material coordinate system and one in the spatial coordinate system (e_{m})

$$
\boldsymbol{F}=\frac{\partial \varphi_{i}}{\partial X_{J}} \boldsymbol{e}_{i} \otimes \boldsymbol{E}_{J}
$$

and thus transforms like a vector and can be considered as objective.

Objectivity of some quantities

- The Jacobian $J=\operatorname{det} \boldsymbol{F}$ is objective.
- $\boldsymbol{C}, \boldsymbol{E}, \boldsymbol{U}$ are invariant objective.
- The rate of deformation tensor \boldsymbol{d} is objective.
- The spin tensor \boldsymbol{w} is not objective.
- The traction vector t is assumed to be objective thus the Cauchy stress σ is objective.
- The PK2 stress tensor \boldsymbol{S} is invariant objective.
- The material time rate of the GL strain tensor $\dot{\boldsymbol{E}}$ is invariant objective.

The material time derivatice of the Cauchy stress tensor

The Cauchy stress tensor σ is objective, thus $\sigma^{+}=\boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{Q}^{T}$.
What about its material time derivative?

$$
\frac{\mathrm{D} \boldsymbol{\sigma}^{+}}{\mathrm{D} t}=\frac{\mathrm{D} \boldsymbol{Q}}{\mathrm{D} t} \boldsymbol{\sigma} \boldsymbol{Q}^{T}+\boldsymbol{Q} \frac{\mathrm{D} \boldsymbol{\sigma}}{\mathrm{D} t} \boldsymbol{Q}^{T}+\boldsymbol{Q} \boldsymbol{\sigma} \frac{\mathrm{D} \boldsymbol{Q}^{T}}{\mathrm{D} t}
$$

Clearly the material time rate of the Cauchy stress tensor is not objective.

Objective stress rates

Starting from the material time rate of the Cauchy stress

$$
\dot{\boldsymbol{\sigma}}^{+}=\dot{\boldsymbol{Q}} \boldsymbol{\sigma} \boldsymbol{Q}^{T}+\boldsymbol{Q} \dot{\boldsymbol{\sigma}} \boldsymbol{Q}^{T}+\boldsymbol{Q} \boldsymbol{\sigma} \dot{\boldsymbol{Q}}^{T}
$$

and taking into account that

$$
\boldsymbol{w}^{+}=\dot{\boldsymbol{Q}} \boldsymbol{Q}^{T}+\boldsymbol{Q w} \boldsymbol{Q}^{T} \quad \Rightarrow \quad \dot{Q}=\boldsymbol{w}^{+} \boldsymbol{Q}-\boldsymbol{Q w}
$$

Substituting it back

$$
\begin{aligned}
\dot{\boldsymbol{\sigma}}^{+} & =\boldsymbol{Q} \dot{\boldsymbol{\sigma}} \boldsymbol{Q}^{T}+\left(\boldsymbol{w}^{+} \boldsymbol{Q}-\boldsymbol{Q} \boldsymbol{w}\right) \boldsymbol{\sigma} \boldsymbol{Q}^{T}+\boldsymbol{Q} \boldsymbol{\sigma}\left(\boldsymbol{w}^{+} \boldsymbol{Q}-\boldsymbol{Q w}\right)^{T} \\
& =\boldsymbol{Q} \dot{\boldsymbol{\sigma}} \boldsymbol{Q}^{T}+w^{+} \boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{Q}^{T}-\boldsymbol{Q} \boldsymbol{w} \boldsymbol{\sigma} \boldsymbol{Q}^{T}+\boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{Q}^{T}\left(\boldsymbol{w}^{+}\right)^{T}-\boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{w}^{T} \boldsymbol{Q}^{T} \\
\dot{\boldsymbol{\sigma}}^{+}-w^{+} \boldsymbol{\sigma}^{+}-\sigma^{+}\left(\boldsymbol{w}^{+}\right)^{T} & =\boldsymbol{Q} \dot{\boldsymbol{\sigma}} \boldsymbol{Q}^{T}-\boldsymbol{Q} \boldsymbol{w} \boldsymbol{\sigma} \boldsymbol{Q}^{T}-\boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{w}^{T} \boldsymbol{Q}^{T}=\boldsymbol{Q}\left(\dot{\boldsymbol{\sigma}}-\boldsymbol{w} \boldsymbol{\sigma}-\boldsymbol{\sigma} \boldsymbol{w}^{T}\right) \boldsymbol{Q}^{T} .
\end{aligned}
$$

Define $\stackrel{\circ}{\boldsymbol{\sigma}}=\dot{\boldsymbol{\sigma}}-\boldsymbol{w} \boldsymbol{\sigma}-\sigma \boldsymbol{w}^{T}$ then

$$
\stackrel{\circ}{\sigma}^{+}=Q \stackrel{\circ}{\sigma} Q^{T}
$$

is an objective rate of the Cauchy stress known as the Jaumann-Zaremba rate of the Cauchy stress. It is also called as co-rotational rate.

Objective stress rates (cont'd)

The Jaumann-Zaremba rate is very much used in large strain plasticity computations and many commercial FE programs use it in their implementation

$$
\stackrel{\circ}{\boldsymbol{\sigma}}=\mathbb{C}^{\mathrm{e}}:\left(\boldsymbol{d}-\boldsymbol{d}^{\mathrm{p}}\right)
$$

However, it has some shortcomings which was observed by J.K. Dienes in 1979 (Acta Mechanica, Vol 32, pp. 217-232).
E.g. in simple shear $x_{1}=X_{1}+\left(t / t_{0}\right) X_{2}, x_{2}=X_{2}, x_{3}=X_{3}$ the solution for hypoelastic $\stackrel{\circ}{\boldsymbol{\sigma}}=\mathbb{C}^{\mathrm{e}}: \boldsymbol{d}$ produces oscillating solution

$$
\begin{aligned}
\sigma_{12} & =G \sin \left(t / t_{0}\right) \\
\sigma_{11} & =G\left(1-\cos \left(t / t_{0}\right)\right) \\
\sigma_{22} & =G\left(\cos \left(t / t_{0}\right)-1\right)
\end{aligned}
$$

where G is the shear modulus.

Objective stress rates (cont'd)

There are many other objective time rates, like (hear given as stress rates)
(1) Oldroyd rate

$$
\stackrel{\nabla}{\boldsymbol{\sigma}}=\dot{\boldsymbol{\sigma}}-\boldsymbol{l} \boldsymbol{\sigma}-\boldsymbol{\sigma} \boldsymbol{l}^{T} .
$$

(2) Cotter-Rivlin rate

$$
\stackrel{\Delta}{\boldsymbol{\sigma}}=\dot{\boldsymbol{\sigma}}+\boldsymbol{l}^{T} \boldsymbol{\sigma}+\boldsymbol{\sigma} \boldsymbol{l} .
$$

(3) Truesdell rate

$$
\stackrel{*}{\boldsymbol{\sigma}}=\dot{\boldsymbol{\sigma}}-\boldsymbol{l} \boldsymbol{\sigma}-\boldsymbol{\sigma} \boldsymbol{l}^{T}+\boldsymbol{\sigma} \operatorname{tr} \boldsymbol{d} .
$$

(- Green-McInnis-Naghdi $\quad \stackrel{\square}{\boldsymbol{\sigma}}=\dot{\boldsymbol{\sigma}}-\dot{\boldsymbol{R}} \boldsymbol{R}^{T} \boldsymbol{\sigma}+\boldsymbol{\sigma} \dot{\boldsymbol{R}} \boldsymbol{R}^{T}$.

Incremental descriptions

(1) Total Lagrangian formulation. Reference configuration is the initial configuration Ω_{0}.
(2) Updated Lagrangian formulation
(1) Reference configuration is the last equilibrium state Ω_{1}.
(2) Reference configuration is the state from the last iterate $\Omega_{1}^{(i)}$, weather or not it is in equilibrium.
(3) Eulerian formulation. Reference to the current state Ω_{2}.

Principle of virtual work (PVW)

Total Lagrangian (TL) formulation

$$
-\int_{\Omega_{0}} \delta \boldsymbol{E}_{0}: \boldsymbol{S}_{0} \mathrm{~d} V_{0}+\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \rho_{0} \overline{\boldsymbol{b}} \mathrm{~d} V_{0}+\int_{\partial \Omega_{t 0}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A_{0}-\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_{0} \mathrm{~d} V_{0}=0
$$

Updated Lagrangian (UL) formulation

$$
-\int_{\Omega_{1}} \delta \boldsymbol{E}_{1}: \boldsymbol{S}_{1} \mathrm{~d} V_{1}+\int_{\Omega_{1}} \delta \boldsymbol{u} \cdot \rho_{1} \overline{\boldsymbol{b}} \mathrm{~d} V_{1}+\int_{\partial \Omega_{t 1}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A_{1}-\int_{\Omega_{1}} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_{1} \mathrm{~d} V_{1}=0
$$

Eulerian formulation

$$
-\int_{\Omega_{2}} \delta \boldsymbol{e}: \sigma \mathrm{d} V_{2}+\int_{\Omega_{2}} \delta \boldsymbol{u} \cdot \rho_{2} \overline{\boldsymbol{b}} \mathrm{~d} V_{2}+\int_{\partial \Omega_{t 2}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A_{2}-\int_{\Omega_{2}} \delta \boldsymbol{u} \cdot \ddot{\boldsymbol{u}} \rho_{2} \mathrm{~d} V_{2}=0
$$

Variation or linearization of a spatial field is formally equivalent to the Lie time derivative.

Variation of the Almansi strain tensor

Variation of the Eulerian Almansi strain tensor:
(1) Apply the pull back operation to obtain a material field.

$$
\boldsymbol{F}^{T} e \boldsymbol{F}=\boldsymbol{E}
$$

(2) Take the variation of the material Green-Lagrange tensor

$$
\delta \boldsymbol{E}=\frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \delta \boldsymbol{H}\right)=\operatorname{sym} \delta \boldsymbol{H}^{T} \boldsymbol{F}
$$

(3) Apply the push forward operation to obtain the spatial field:

$$
\boldsymbol{F}^{-T} \delta \boldsymbol{E} \boldsymbol{F}^{-1}=\boldsymbol{F}^{-T} \frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \delta \boldsymbol{H}\right) \boldsymbol{F}^{-1}=\boldsymbol{F}^{-T} \frac{1}{2}\left[(\operatorname{Grad} \delta \boldsymbol{u})^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \operatorname{Grad} \delta \boldsymbol{u}\right] \boldsymbol{F}^{-1}
$$

Notice that the spatial gradient $\operatorname{grad} \delta \boldsymbol{u}=\operatorname{Grad} \delta \boldsymbol{u} \boldsymbol{F}^{-1}$, thus

$$
\boldsymbol{F}^{-T} \frac{1}{2}\left[(\operatorname{Grad} \delta \boldsymbol{u})^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \operatorname{Grad} \delta \boldsymbol{u}\right] \boldsymbol{F}^{-1}=\frac{1}{2}\left[(\operatorname{grad} \delta \boldsymbol{u})^{T}+\operatorname{grad} \delta \boldsymbol{u}\right]
$$

Internal virtual work

It has to be equivalent

$$
-\int_{\Omega_{0}} \delta \boldsymbol{E}_{0}: \boldsymbol{S}_{0} \mathrm{~d} V_{0}=-\int_{\Omega_{2}} \delta \boldsymbol{e}: \boldsymbol{\sigma} \mathrm{d} V_{2}
$$

Taking into account equations

$$
\boldsymbol{S}_{0}=J \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T} \quad \delta \boldsymbol{E}_{0}=\boldsymbol{F}^{T} \delta \boldsymbol{e} \boldsymbol{F},
$$

we get

$$
-\int_{\Omega_{0}} \boldsymbol{F}^{T} \delta \boldsymbol{e} \boldsymbol{F}: \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T} J \mathrm{~d} V_{0}=-\int_{\Omega_{2}} \delta \boldsymbol{e}: \boldsymbol{\sigma} \mathrm{d} V_{2} .
$$

Internal virtual work (cont'd)

Let us look a little bit closer the term $\boldsymbol{F}^{T} \delta \boldsymbol{e} \boldsymbol{F}: \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T}$. It is easy to simplify in the index form

$$
\delta E_{K L}=F_{p K} \delta e_{p q} F_{q L}, \quad S_{K L}=J F_{K m}^{-1} \sigma_{m n} F_{L n}^{-1}
$$

the inner product is then

$$
\begin{aligned}
\delta \boldsymbol{E}: \boldsymbol{S} & =\delta E_{K L} S_{K L}=J F_{p K} \delta e_{p q} F_{q L} F_{K m}^{-1} \sigma_{m n} F_{L n}^{-1}=J \delta_{p m} \delta_{q n} \delta e_{p q} \sigma_{m n} \\
& =J \delta e_{m n} \sigma_{m n}=J \delta \boldsymbol{e}: \boldsymbol{\sigma}
\end{aligned}
$$

Linearization of the internal virtual work

In the total Lagrangian formulation

$$
\begin{equation*}
-\int_{\Omega_{0}} \delta \boldsymbol{E}: \boldsymbol{S} \mathrm{d} V \tag{1}
\end{equation*}
$$

Assuming constitutive equation in the form $\boldsymbol{S}=\mathbb{C} \boldsymbol{E}$ and we are in the displaced state \boldsymbol{u}_{1} and we try to solve the increment to obtain $\boldsymbol{u}_{2}=\boldsymbol{u}_{1}+\Delta \boldsymbol{u}$. At the configuration 1 stresses are denoted as \boldsymbol{S}_{1} and then

$$
\boldsymbol{S}_{2}=\boldsymbol{S}_{1}+\Delta \boldsymbol{S}=\boldsymbol{S}_{1}+\mathbb{C} \Delta \boldsymbol{E}
$$

substituting it and $\delta \boldsymbol{E}, \Delta \boldsymbol{E}$ and $\boldsymbol{F}_{2}=\boldsymbol{F}_{1}+\Delta \boldsymbol{F}=\boldsymbol{F}_{1}+\Delta \boldsymbol{H}$ into the internal VW-expression (1) gives

$$
\begin{equation*}
-\int_{\Omega_{0}} \frac{1}{2}\left[\delta \boldsymbol{H}^{T}\left(\boldsymbol{F}_{1}+\Delta \boldsymbol{H}\right)+\left(\boldsymbol{F}_{1}^{T}+\Delta \boldsymbol{H}^{T}\right) \delta \boldsymbol{H}\right]:\left(\boldsymbol{S}_{1}+\mathbb{C} \frac{1}{2}\left[\Delta \boldsymbol{H}^{T}\left(\boldsymbol{F}_{1}+\Delta \boldsymbol{H}\right)+\left(\boldsymbol{F}_{1}^{T}+\Delta \boldsymbol{H}\right) \Delta \boldsymbol{H}\right]\right) \mathrm{d} V \tag{2}
\end{equation*}
$$

About programming

How to set up IEN, ID and LM arrays.

- $\operatorname{IEN}(L, E)=$ global node number of local node L of an element E.
- ID $(1, N)=$ global DOF number of local DOF I at global node N .
- $\mathrm{LM}(J)=$ Location Matrix, gives the global DOF of a local node J for element E.

LM array is redundant, it is not necessarily needed, it can be constructed from IEN and ID.

Next

Lecture.
Linearization of the internal virtual work $+1,2,3 \mathrm{D}$ truss element.
Exercises on Thursday.
Numerical integration, code structure for element and internal force vector computations, quadratic isoparametric bar element.

