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Objectivity
Motivation: Material properties must be invariant under changes of observers.

Observer in the Euclidean space is equipped to measure

@ relative positions of points in space, and

@ instants of time.

An event is noticed by an observer in terms of position x and time .

) (A) A spatial mapping satisfying these requirements

1 (x+ 1) can be represented by transformation
Q +
Distance: Jx — xo| o Ix* =i = Ik - o " —xo = Q(t)(z — zo),
Time interval: ¢ — th—ty =t—to

e with a proper orthogonal tensor Q(t). The
0o transformation can be written as

zt=c@t)+ Q)z, tT=t+tJ —to.

Figure 5.1 from G.A. Holzapfel, Nonl|

John Wiley & Sons, 2000.
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Change of observer

A frame is a rigid reference system from which we observe a a position x of a certain object at a certain
time t. A frame may therefore be called an observer.

Same event is recorded
@ In frame F we record (z,t).
o In frame FT we record (z*,¢T). For simplicity assume t™ = ¢.

In frame F and frame F 7, the coordinates of the same particle are related as

zt = Q(t)x + c(t),
where QT = Q' and det Q = 1.
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Objective tensors

Tensors that transform in a similar manner when the frame is changed as when the coordinate system is
changed are called objective tensors.

Definition of objective tensors

fr=f objective scalar
b =Qb objective vector
T =QTQT objective second-order tensor

Definition of invariant objective tensors

fr=f invariant objective scalar
b =b invariant objective vector
Tt=T

invariant objective second-order tensor
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Objectivity of deformation gradient F'?

@ In frame F we have motion z = (X, t), and

@ in frame F we have motion 27 = o (X, ).
Now the deformation gradients recorded by the two frames are

+
o9 s Ft-99

T ox 0X

and the motions are related as 7 = Qz + c, then

_O0zT Ozt Oz

+ = = —
F= 0X oz 0X QF.

Deformation gradient is a two-point tensor having one base (E ) in the material coordinate system and one in
the spatial coordinate system (e,)

_ 9w
0Xy
and thus transforms like a vector and can be considered as objective.

e, ®FE,
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Objectivity of some quantities

The Jacobian J = det F is objective.

C, E, U are invariant objective.

The rate of deformation tensor d is objective.

The spin tensor w is not objective.

The traction vector t is assumed to be objective thus the Cauchy stress o is objective.

The PK2 stress tensor S is invariant objective.

The material time rate of the GL strain tensor E is invariant objective.
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The material time derivatice of the Cauchy stress tensor

The Cauchy stress tensor o is objective, thus o™ = Qo Q7.

What about its material time derivative?

Do™* Q QT
o = °Q +Q Q + Qo :

Clearly the material time rate of the Cauchy stress tensor is not objective.
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Objective stress rates
Starting from the material time rate of the Cauchy stress
6t =QoQ"+QsQ" + Qo Q"

and taking into account that

w'=QQ +Que" = Q=wvw'Q-Qu.
Substituting it back

6" =Q3Q" + (v Q - Qu)oQ" + Qo(w' Q - Qu)”

=Q6Q" + v QoQ" - QwoQ" + Qo Q" (v")" - Qow’ Q"
ot —wiot = a'+(w+)T =Q6Q" — Qo Q" — Qow” QT = Qo — wo — O"wT) Q7.
Define o= 6 — wo — cw? then .
o =Qao Q"

is an objective rate of the Cauchy stress known as the Jaumann-Zaremba rate of the Cauchy stress. It is also
called as co-rotational rate.
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Objective stress rates (cont'd)

The Jaumann-Zaremba rate is very much used in large strain plasticity computations and many
commercial FE programs use it in their implementation

o

o=C°: (d— dP)

However, it has some shortcomings which was observed by J.K. Dienes in 1979 (Acta Mechanica, Vol
32, pp. 217-232).

E.g. in simple shear 1 = X1 + (t/to) X2, 2o = Xo, x3 = X3 the solution for hypoelastic o=C°:d
produces oscillating solution

012 = GSin(t/to),

o11 =G(1 — cos(t/to)),

022 ZG(COS(t/to) — 1),

where G is the shear modulus.
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Objective stress rates (cont'd)

There are many other objective time rates, like (hear given as stress rates)

O Oldroyd rate o=6—lo—al’.
@ Cotter-Rivlin rate g: 6+1To+0ol.
Q@ Truesdell rate o=06—lo—oal? + otrd.
@ Green-McInnis-Naghdi 6= ¢ — RR o +ocRR .
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Incremental descriptions

© Total Lagrangian formulation. Reference configuration is the initial configuration Q.

@ Updated Lagrangian formulation
@ Reference configuration is the last equilibrium state ;.
@ Reference configuration is the state from the last iterate Q" weather or not it is in equilibrium.

© Eulerian formulation. Reference to the current state ().

AF

Fl
o
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Principle of virtual work (PVW)

Total Lagrangian (TL) formulation

— OEg: SodVyo + 6’u-p05dVo —|—/ ou - t_dAo — ou - ’l'l:p() dVo =0
Qo Qo Q40 Qo
Updated Lagrangian (UL) formulation
— OE,:S5,dV —I—/ 6u-p15dV1 +/ ou - t_dAl — ou - ’l'l:pl dVi=0
Q1 Q1 Q41 Q1
Eulerian formulation
de:odVa+ 6u‘p25dV2+/ Su - tdAs — du - 4p2dVae =0
Qo Qo Q42 Q2

Variation or linearization of a spatial field is formally equivalent to the Lie time derivative.
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Variation of the Almansi strain tensor

Variation of the Eulerian Almansi strain tensor:

© Apply the pull back operation to obtain a material field.

F'eF =FE
© Take the variation of the material Green-Lagrange tensor

SE=L10H"F+F"6H) =syméH"F
© Apply the push forward operation to obtain the spatial field:
FT"SEF ' =F "10H"F+ F"6H)F~' = F~"}[(Gradéu)" F + F" Graddu]F "
Notice that the spatial gradient graddu = Graddu F~', thus

F~"1[(Gradéu)" F + F" Graddu]F " = }[(gradéu)” + graddu].
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Internal virtual work

It has to be equivalent

—/ (5E0150dV0:—/ 66:0’(1‘/2
QO QZ

Taking into account equations

So=JF 'oF T §E,=FTseF,

we get
—/ FT6eF :F 'oF TJjdVy=— | de:oadVs.
Qo
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Internal virtual work (cont’d)

Let us look a little bit closer the term FLdeF : F 1o F~T. It is easy to simplify in the index form
0Fkr :FpKéequqL, Skr1, = JFI;rlnﬂmnFE;,
the inner product is then

OF : S ZSEKLSKL = JFpK5equ(,LFI}7lnamnFL’,} = Jépméq,,éepqamn

=Jéeynomn = Joe : o

R. Kouhia (Tampere University, Structural Mechanics) 15 / 18



Linearization of the internal virtual work

In the total Lagrangian formulation

— | SE:.Sav (1)
Qo

Assuming constitutive equation in the form S = CE and we are in the displaced state u; and we try to
solve the increment to obtain us = u; + Awu. At the configuration 1 stresses are denoted as Sy and
then

So=81+AS8S=8,+CAE,
substituting it and 0E, AE and F3 = F1 + AF = F; + AH into the internal VW-expression (1) gives

—/ USHT(Fy+ AH)+(FT+ AHT)SH) : (S, +CLAHT (Fy+ AH)+(FT+ AH)AH)) AV (2)
Qo
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About programming

How to set up IEN, ID and LM arrays.
@ IEN(L,E) = global node number of local node L of an element E.
@ ID(I,N) = global DOF number of local DOF | at global node N.
e LM(J) = Location Matrix, gives the global DOF of a local node J for element E.

LM array is redundant, it is not necessarily needed, it can be constructed from IEN and ID.

R. Kouhia (Tampere University, Structural Mechanics) 17 / 18



Next

Lecture.
Linearization of the internal virtual work + 1,2,3 D truss element.

Exercises on Thursday.

Numerical integration, code structure for element and internal force vector computations, quadratic
isoparametric bar element.
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