FEM advanced course

Lecture 3 - Kinematics, time rates, elastic constitutive models

Reijo Kouhia

Tampere University, Structural Mechanics

Principle of virtual work (PVW)

Notice that the PVW is independent of the constitutive model.

Almansi strain tensor

Length of a line element PQ is $\mathrm{d} S=\sqrt{\mathrm{d} \boldsymbol{X} \cdot \mathrm{d} \boldsymbol{X}}$,
In deformed state $|p q|=\mathrm{d} s=\sqrt{\mathrm{d} \boldsymbol{x} \cdot \mathrm{d} \boldsymbol{x}}$ notice that $\mathrm{d} \boldsymbol{X}=\boldsymbol{F}^{-1} \mathrm{~d} \boldsymbol{x}$

$$
\begin{aligned}
\frac{1}{2}\left[(\mathrm{~d} s)^{2}-(\mathrm{d} S)^{2}\right] & =\frac{1}{2}(\mathrm{~d} \boldsymbol{x} \cdot \mathrm{~d} \boldsymbol{x}-\mathrm{d} \boldsymbol{X} \cdot \mathrm{~d} \boldsymbol{X}) \\
& =\frac{1}{2} \mathrm{~d} \boldsymbol{x} \cdot\left(\boldsymbol{I}-\boldsymbol{F}^{-T} \boldsymbol{F}^{-1}\right) \mathrm{d} \boldsymbol{x}=\mathrm{d} \boldsymbol{x} \cdot \boldsymbol{e} \mathrm{~d} \boldsymbol{x}
\end{aligned}
$$

where

$$
e=\frac{1}{2}\left(I-b^{-1}\right)
$$

is the Almansi strain tensor and $\boldsymbol{b}=\boldsymbol{F} \boldsymbol{F}^{T}$ is the left Cauchy-Green deformation tensor.
Almansi strain tensor is of Eulerian type. In dyadic form it can be written as

$$
\boldsymbol{e}=e_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j},
$$

where e_{i} are the unit base vectors of the spatial description.
(The Green-Lagrange strain tensor is expressed in the material description $\boldsymbol{E}=E_{I J} \boldsymbol{E}_{I} \otimes \boldsymbol{E}_{J}$, where \boldsymbol{E}_{I} are the unit base vectors in the material description.)

Some transformation formulas

Area change between current and reference configuration

$$
\mathrm{d} \boldsymbol{a}=\boldsymbol{n} \mathrm{d} a=J \boldsymbol{F}^{-T} \boldsymbol{N} \mathrm{~d} A=J \boldsymbol{F}^{-T} \mathrm{~d} \boldsymbol{A}
$$

It is known as Nanson's formula.
Volume change between current and reference configuration

$$
\mathrm{d} v=J \mathrm{~d} V, \quad J(\boldsymbol{X}, t)=\operatorname{det} \boldsymbol{F}(\boldsymbol{X}, t) .
$$

Pull back and push forward operations

We have to distinguish covariant (contravariant basis) and contravariant tensors (covariant basis).
Covariant tensors are often denoted as \boldsymbol{E}^{b} and contravariant tensors as $\boldsymbol{\sigma}^{\sharp}$. Most strain/deformation tensors are covariant tensors, e.g. $\boldsymbol{E}^{b}, \boldsymbol{C}^{b}, \boldsymbol{e}^{b},\left(\boldsymbol{b}^{-1}\right)^{b}$. Contravariant deformation tensors are e.g. $\left(\boldsymbol{C}^{-1}\right)^{\sharp}, \boldsymbol{b}^{\sharp}$.

Pull back operation (from spatial to material)

Covariant tensor e^{b} :
Contravariant tensor σ^{\sharp} :

$$
\varphi_{*}^{-1}(\boldsymbol{e})=\boldsymbol{F}^{T} \boldsymbol{e} \boldsymbol{F}
$$

$$
\varphi_{*}^{-1}(\boldsymbol{\sigma})=\boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T}
$$

Push forward operation (from material to spatial)

Covariant tensor \boldsymbol{E}^{b} :

$$
\text { Contravariant tensor } S^{\sharp} \text { : }
$$

$$
\varphi_{*}(\boldsymbol{E})=\boldsymbol{F}^{-T} \boldsymbol{E F}^{-1}
$$

$$
\varphi_{*}(\boldsymbol{S})=\boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{T} \quad(=\boldsymbol{\tau}=J \boldsymbol{\sigma})
$$

where $\boldsymbol{\tau}$ is the Kirchhoff stress.

Velocity gradient

Spatial velocity gradient $\boldsymbol{l}(\boldsymbol{x}, t)$ is defined as

$$
\boldsymbol{l}(\boldsymbol{x}, t)=\frac{\partial \hat{\boldsymbol{v}}(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}=\operatorname{grad} \hat{\boldsymbol{v}}(\boldsymbol{x}, t) \quad \text { or in index notation } \quad l_{i j}=\frac{\partial \hat{v}_{i}}{\partial x_{j}} .
$$

Decomposing it into symmetric and antisymmetric (skew) parts

$$
\boldsymbol{l}(\boldsymbol{x}, t)=\boldsymbol{d}(\boldsymbol{x}, t)+\boldsymbol{w}(\boldsymbol{x}, t)
$$

where

$$
\boldsymbol{d}=\frac{1}{2}\left(\boldsymbol{l}+\boldsymbol{l}^{T}\right)=\boldsymbol{d}^{T}, \quad \text { and } \quad \boldsymbol{w}=\frac{1}{2}\left(\boldsymbol{l}-\boldsymbol{l}^{T}\right)=-\boldsymbol{w}^{T},
$$

d is the rate of deformation tensor and w is the spin tensor.

Velocity gradient in terms of deformation gradient

$$
\begin{aligned}
\boldsymbol{l}(\boldsymbol{x}, t) & =\operatorname{grad} \hat{\boldsymbol{v}}(\boldsymbol{x}, t)=\frac{\partial \hat{\boldsymbol{v}}(\boldsymbol{x}, t)}{\partial \boldsymbol{x}} \\
& =\frac{\partial \dot{\boldsymbol{\varphi}}(\boldsymbol{X}, t)}{\partial \boldsymbol{X}} \frac{\partial \boldsymbol{X}}{\partial \boldsymbol{x}}=\operatorname{Grad} \boldsymbol{v}(\boldsymbol{X}, t) \boldsymbol{F}^{-1}=\frac{\partial}{\partial t}\left(\frac{\partial \boldsymbol{\varphi}(\boldsymbol{X}, t)}{\partial \boldsymbol{X}}\right) \boldsymbol{F}^{-1}=\dot{\boldsymbol{F}} \boldsymbol{F}^{-1}
\end{aligned}
$$

Material time derivative of a spatial feld

The material time derivative of a smooth spatial field $f(\boldsymbol{x}, t)$ is

$$
\begin{aligned}
\dot{f}(\boldsymbol{x}, t)=\frac{\mathrm{D} f(\boldsymbol{x}, t)}{\mathrm{D} t}= & \left.\left(\frac{\partial f(\boldsymbol{\varphi}(\boldsymbol{X}, t), t)}{\partial t}\right)\right|_{\boldsymbol{X}=\text { constant }} \\
& =\frac{\partial f(\boldsymbol{x}, t)}{\partial t}+\left.\frac{\partial f(\boldsymbol{x}, t)}{\partial \boldsymbol{x}} \cdot \frac{\partial \boldsymbol{\varphi}(\boldsymbol{X}, t)}{\partial t}\right|_{\boldsymbol{X}=\boldsymbol{\varphi}^{-1}(\boldsymbol{x}, t)}=\frac{\partial f(x, t)}{\partial t}+\operatorname{grad} f \cdot \hat{\boldsymbol{v}}(\boldsymbol{x}, t)
\end{aligned}
$$

The first term denotes the local time derivative of the spatial scalar field f, while the second term is called the convective rate of change of f, which is due to the change in position of particle \boldsymbol{X}.
Note that the material time derivative of a material field is just a normal time derivative, e.g.

$$
\dot{\boldsymbol{E}}(\boldsymbol{X}, t)=\frac{\mathrm{D} \boldsymbol{E}}{D t}=\frac{\partial \boldsymbol{E}(\boldsymbol{X}, t)}{\partial t}=\ldots=\boldsymbol{F}^{T} d \boldsymbol{F} .
$$

Lee time derivative

Lee time derivative of a spatial tensor can be computed in the following way:
(1) Apply the pull back operation to obtain a material field. As an example we consider the Lee time derivative of the Almansi strain tensor:

$$
\boldsymbol{F}^{T} e \boldsymbol{F}=\boldsymbol{E}
$$

(2) Take the material time derivative of the obtained material field:

$$
\dot{E}
$$

(Apply the push forward operation to obtain the spatial field:

$$
\boldsymbol{F}^{-T} \dot{\boldsymbol{E}} \boldsymbol{F}^{-1}=\boldsymbol{d}
$$

Lee time derivative as presented here gives the time rate of change relative to the velocity field \boldsymbol{v}.

Constitutive models classification

Symmetry classification

Eight possible linear elastic symmetries

type of material symmetry	number of independent elastic coefficients
Triclinic	21
Monoclinic	13
Orthotropic	9
Tetragonal	6
Cubic	3
Trigonal	7
Transverse isotropy	5
Isotropy	2

[^0]
Different types of elasticity

- Cauchy elasticity

$$
\sigma=f(\varepsilon), \quad \text { or } \quad \varepsilon=\boldsymbol{g}(\boldsymbol{\sigma}) .
$$

- Hypoelasticity

$$
\dot{\sigma}=\boldsymbol{h}(\boldsymbol{\sigma}, \boldsymbol{d}) .
$$

- Hyperelasticity

$$
\boldsymbol{S}=2 \rho_{0} \frac{\partial \psi(\boldsymbol{C})}{\partial \boldsymbol{C}}, \quad \text { or } \quad \boldsymbol{\sigma}=2 \rho \boldsymbol{b} \frac{\partial \psi(\boldsymbol{b})}{\partial \boldsymbol{b}}
$$

The constitutive equation is derived from a potential either from spesific Helmholtz free energy ψ. In isothermal problems it is equal to the spesific strain energy. In the following $\rho_{0} \psi \equiv W$.

Isotropic elasticity

Isotropy means that the properties are the same in all directions.
The strain energy function can only be a function of the invariants

$$
I_{C}, I I_{C}, I I I_{C}, \quad \text { or } \quad I_{b}, I I_{b}, I I I_{b} .
$$

Representation theorem for isotropic elasticity: The most general form of isotropic elasticity is

$$
\boldsymbol{\sigma}=a_{0} \boldsymbol{I}+a_{1} \boldsymbol{b}+a_{2} \boldsymbol{b}^{2},
$$

where the coefficients a_{0}, a_{1}, a_{2} can be non-linear functions of the invariants.
Notice that the invariants can be written in terms of the principal stretches

$$
W(\boldsymbol{C}) \equiv W(\boldsymbol{b})=W\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\right)
$$

Growth conditions to W :

$$
\lim _{J \rightarrow+\infty} W=\infty \quad \text { and } \quad \lim _{J \rightarrow 0+} W=\infty
$$

Some examples of isotropic elastic models

Neo-Hooke for incompressible materials

$$
W\left(I_{C}\right)=\frac{1}{2} \mu\left(I_{C}-3\right) .
$$

Mooney-Rivlin (1940), (1948) model for incompressible materials

$$
W\left(I_{C}, I I_{C}\right)=c_{1}\left(I_{C}-3\right)+c_{2}\left(I I_{C}-3\right) .
$$

Ogden (1972) model

$$
W\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=g(J)+\sum_{i=1}^{r} \mu_{i} K_{i}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
$$

where

$$
K_{i}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\frac{1}{\alpha_{i}}\left(\lambda_{1}^{\alpha_{i}}+\lambda_{2}^{\alpha_{i}}+\lambda_{3}^{\alpha_{i}}-3\right)
$$

Restrictions to parameters

$$
\sum_{i=1}^{r} \mu_{i} \alpha_{i}=2 \mu, \quad \text { and } \quad \mu_{i} \alpha_{i}>0
$$

Isotropic elastic models (cont'd)

One specific choice for the g-function, Ciarlet (1988):

$$
g(J)=\frac{1}{4} \Lambda\left(J^{2}-1\right)-\left(\frac{1}{2} \Lambda+\mu\right) \ln (J),
$$

and Λ, μ can be interpreted as Lamé constants.

Next

Exercises on Thursday at 2 PM in the CAD class K1242.
PVW in 1-D bar example using different constitutive model.
Next lecture, objectivity, updated Lagrangian formulation.

[^0]: Figure from Chadwick, Vianello, Cowin, JMPS, 2001.

