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Principle of virtual work (PVW)

−
∫

Ω0

δE : S dV +

∫
Ω0

δu·ρ0b̄ dV +

∫
∂Ωt0

δu · t̄ dA−
∫

Ω0

δu · üρ0 dV = 0

B∗S = ρ0b̄ equilibrium

S = CE constitutive model

E = Gu ⇒ δE= Bδu kinematical relation

Notice that the PVW is independent of the constitutive model.
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Almansi strain tensor

Length of a line element PQ is dS =
√
dX ·dX ,

In deformed state |pq| = ds =
√
dx ·dx notice that dX = F−1dx

1
2
[(ds)2 − (dS)2] = 1

2
(dx ·dx − dX ·dX )

= 1
2
dx ·(I − F−T F−1)dx = dx · e dx

where
e = 1

2
(I − b−1)

is the Almansi strain tensor and b = FFT is the left Cauchy-Green deformation tensor.

Almansi strain tensor is of Eulerian type. In dyadic form it can be written as

e = eijei ⊗ ej ,

where ei are the unit base vectors of the spatial description.

(The Green-Lagrange strain tensor is expressed in the material description E = EIJE I ⊗ EJ , where E I are the

unit base vectors in the material description.)
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Some transformation formulas

Area change between current and
reference configuration

da = nda = JF−TN dA = JF−TdA

It is known as Nanson’s formula.
Volume change between current and
reference configuration

dv = JdV, J(X , t) = det F (X , t).
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Pull back and push forward operations

We have to distinguish covariant (contravariant basis) and contravariant tensors (covariant basis).

Covariant tensors are often denoted as E [ and contravariant tensors as σ]. Most strain/deformation

tensors are covariant tensors, e.g. E [,C [, e[, (b−1)[. Contravariant deformation tensors are e.g.
(C−1)], b].

Pull back operation (from spatial to material)
Covariant tensor e[:

ϕ−1∗ (e) = FTeF

Contravariant tensor σ]:

ϕ−1∗ (σ) = F−1σF−T

Push forward operation (from material to spatial)

Covariant tensor E [:

ϕ∗(E) = F−TEF−1

Contravariant tensor S ]:

ϕ∗(S) = FSFT (= τ = Jσ)

where τ is the Kirchhoff stress.
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Velocity gradient

Spatial velocity gradient l(x , t) is defined as

l(x , t) =
∂v̂(x , t)

∂x
= grad v̂(x , t) or in index notation lij =

∂v̂i
∂xj

.

Decomposing it into symmetric and antisymmetric (skew) parts

l(x , t) = d(x , t) + w(x , t)

where

d =
1

2
(l + lT ) = dT , and w =

1

2
(l − lT ) = −wT ,

d is the rate of deformation tensor and w is the spin tensor.
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Velocity gradient in terms of deformation gradient

l(x , t) = gradv̂(x , t) =
∂v̂(x , t)

∂x

=
∂ϕ̇(X , t)

∂X

∂X

∂x
= Gradv(X , t)F−1 =

∂

∂t

(
∂ϕ(X , t)

∂X

)
F−1 = ḞF

−1
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Material time derivative of a spatial feld

The material time derivative of a smooth spatial field f(x , t) is

ḟ(x , t) =
Df(x , t)

Dt
=

(
∂f(ϕ(X , t), t)

∂t

) ∣∣∣∣
X=constant

=
∂f(x , t)

∂t
+
∂f(x , t)

∂x
· ∂ϕ(X , t)

∂t

∣∣∣∣
X=ϕ−1(x ,t)

=
∂f(x , t)

∂t
+grad f · v̂(x , t)

The first term denotes the local time derivative of the spatial scalar field f , while the second term is
called the convective rate of change of f , which is due to the change in position of particle X .

Note that the material time derivative of a material field is just a normal time derivative, e.g.

Ė(X , t) =
DE

Dt
=
∂E(X , t)

∂t
= ... = FTdF .
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Lee time derivative

Lee time derivative of a spatial tensor can be computed in the following way:

1 Apply the pull back operation to obtain a material field. As an example we consider the Lee time
derivative of the Almansi strain tensor:

FTeF = E

2 Take the material time derivative of the obtained material field:

Ė

3 Apply the push forward operation to obtain the spatial field:

F−T ĖF−1 = d

Lee time derivative as presented here gives the time rate of change relative to the velocity field v .
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Constitutive models classification
Constitutive equations (cont’d) 

Rate independent                                        rate dependent 

25/01/2015 Reijo Kouhia 3 

Elastic 
 
Elasto-plastic            visco-elastic            visco-plastic 
 
Elastic damaging 
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Symmetry classification

Eight possible linear elastic symmetries

Figure from Chadwick, Vianello, Cowin, JMPS, 2001.

type of number of
material independent
symmetry elastic coefficients

Triclinic 21
Monoclinic 13
Orthotropic 9
Tetragonal 6
Cubic 3
Trigonal 7
Transverse isotropy 5
Isotropy 2
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Different types of elasticity

Cauchy elasticity
σ = f (ε), or ε = g(σ).

Hypoelasticity
σ̇ = h(σ,d).

Hyperelasticity

S = 2ρ0
∂ψ(C )

∂C
, or σ = 2ρb

∂ψ(b)

∂b
,

The constitutive equation is derived from a potential either from spesific Helmholtz free energy ψ.
In isothermal problems it is equal to the spesific strain energy. In the following ρ0ψ ≡W .
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Isotropic elasticity

Isotropy means that the properties are the same in all directions.

The strain energy function can only be a function of the invariants

IC , IIC , IIIC , or Ib, IIb, IIIb.

Representation theorem for isotropic elasticity: The most general form of isotropic elasticity is

σ = a0I + a1b + a2b
2,

where the coefficients a0, a1, a2 can be non-linear functions of the invariants.

Notice that the invariants can be written in terms of the principal stretches

W (C ) ≡W (b) = W (λ21, λ
2
2, λ

2
3)

Growth conditions to W :
lim

J→+∞
W =∞ and lim

J→0+
W =∞.
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Some examples of isotropic elastic models
Neo-Hooke for incompressible materials

W (IC) =
1

2
µ(IC − 3).

Mooney-Rivlin (1940), (1948) model for incompressible materials

W (IC , IIC) = c1(IC − 3) + c2(IIC − 3).

Ogden (1972) model

W (λ1, λ2, λ3) = g(J) +

r∑
i=1

µiKi(λ1, λ2, λ3),

where

Ki(λ1, λ2, λ3) =
1

αi
(λαi

1 + λαi
2 + λαi

3 − 3)

Restrictions to parameters
r∑
i=1

µiαi = 2µ, and µiαi > 0.
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Isotropic elastic models (cont’d)

One specific choice for the g-function, Ciarlet (1988):

g(J) =
1

4
Λ(J2 − 1)−

(
1

2
Λ + µ

)
ln(J),

and Λ, µ can be interpreted as Lamé constants.
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Next

Exercises on Thursday at 2 PM in the CAD class K1242.

PVW in 1-D bar example using different constitutive model.

Next lecture, objectivity, updated Lagrangian formulation.
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