R. Kouhia (Tampere University, Structural Mechanics)

FEM advanced course
Lecture 3 - Kinematics, time rates, elastic constitutive models
Reijo Kouhia

Tampere University, Structural Mechanics



Principle of virtual work (PVW)
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kinematical relation
Notice that the PVW is independent of the constitutive model.
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Almansi strain tensor

Length of a line element PQ is dS = vdX.dX,
In deformed state |pg| = ds = v/dz-dz notice that dX = F~'dz

1(ds)? - (d9)%] = i (dz-dz — dX-dX)

de-(I - F "F Ydz =dz - edx

D= N[

where
e=+(I- bt
is the Almansi strain tensor and b = FFT is the left Cauchy-Green deformation tensor.

Almansi strain tensor is of Eulerian type. In dyadic form it can be written as
e=ejje;Q ej,

where e; are the unit base vectors of the spatial description.
(The Green-Lagrange strain tensor is expressed in the material description E = EryE; ® E;, where E; are the
unit base vectors in the material description.)

R. Kouhia (Tampere University, Structural Mechanics) 3/16



Some transformation formulas

Area change between current and
reference configuration

da=nda=JF 'NdA=JF TdA

It is known as Nanson's formula.
Volume change between current and
reference configuration

dv=JdV, J(X,t)=det F(X,1).
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Pull back and push forward operations

We have to distinguish covariant (contravariant basis) and contravariant tensors (covariant basis).

Covariant tensors are often denoted as E” and contravariant tensors as o. Most strain/deformation

tensors are covariant tensors, e.g. Eb, C’, e, (bil)". Contravariant deformation tensors are e.g.
(C™H b

Pull back operation (from spatial to material)

b. Contravariant tensor o

Covariant tensor e

p.'(e)=FTeF ¢ (o) =F 'oF "

Push forward operation (from material to spatial)
Covariant tensor E’: Contravariant tensor S*:

0. (E)=F TEF! ©.(S) = FSFT (=1 =Jo)

where T is the Kirchhoff stress.
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Velocity gradient

Spatial velocity gradient I(x,t) is defined as

a 7y t . . H 6A.
—véZ’ ) =grad ¥(x,t) orin index notation [;; = o

l(z,t) = = o

Decomposing it into symmetric and antisymmetric (skew) parts

l(z,t) =d(z,t) + w(x,t)

where ) )
d=(l 1"y=d", and w= (- ") = —w?,
d is the rate of deformation tensor and w is the spin tensor.
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Velocity gradient in terms of deformation gradient

0d(z,t)

I(z,t) =gradd(z,t) e

= Gradv(X,t)F~ -

_ 0p(X.1) 0X L0 (0p(X,1)
0X Oz B
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Material time derivative of a spatial feld

The material time derivative of a smooth spatial field f(x,t) is

.y =21 ]()f,t) _ (afw(;:,t),t)) ‘X

_0f(=zt)  Of(zt) Op(X.t) _ 0f(=,t)
ot oz o \x—prmy Ot

+grad [ - 9(x,t)

The first term denotes the local time derivative of the spatial scalar field f, while the second term is
called the convective rate of change of f, which is due to the change in position of particle X.

Note that the material time derivative of a material field is just a normal time derivative, e.g.

DE OJE(X,t) _

_ &T
Dt ot = I dF.

B(X,t) =

R. Kouhia (Tampere University, Structural Mechanics) 8 /16



Lee time derivative

Lee time derivative of a spatial tensor can be computed in the following way:

@ Apply the pull back operation to obtain a material field. As an example we consider the Lee time
derivative of the Almansi strain tensor:
FTeF=E

@ Take the material time derivative of the obtained material field:
E
© Apply the push forward operation to obtain the spatial field:
FTEF'=d

Lee time derivative as presented here gives the time rate of change relative to the velocity field v.
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Constitutive models classification

Rate independent rate dependent

R. Kouhia (Tampere University, Structural Mechanics)



Symmetry classification

Eight possible linear elastic symmetries

Triclinic & q\é& Orthotropic
s 4 ook
Monocllﬂ% 2
\A @ Te(ragona/
Tngonal "“@W

@e--/

Cuhlc
Transverse /
Isotropy Isotroplc

Figure from Chadwick, Vianello, Cowin, JMPS, 2001.
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type of number of
material independent
symmetry elastic coefficients
Triclinic 21
Monoclinic 13
Orthotropic 9
Tetragonal 6
Cubic 3
Trigonal 7
Transverse isotropy 5
Isotropy 2
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Different types of elasticity

@ Cauchy elasticity

@ Hypoelasticity

6 =h(o,d)
@ Hyperelasticity Su(C (b
S:2p0—1§(c ), or 0':2pb—qg§) ),

The constitutive equation is derived from a potential either from spesific Helmholtz free energy .
In isothermal problems it is equal to the spesific strain energy. In the following pgy = W.
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Isotropic elasticity

Isotropy means that the properties are the same in all directions.

The strain energy function can only be a function of the invariants
I, 11,11, or Iy Il I11,.
Representation theorem for isotropic elasticity: The most general form of isotropic elasticity is
o=apl +a1b+ a2b2,

where the coefficients ag, a1, as can be non-linear functions of the invariants.
Notice that the invariants can be written in terms of the principal stretches
_ 2 12 42
W(C)=W(b) = W(A, A3, A3)
Growth conditions to W:

lim W =00 and Iim W = o0.
J—~+oo J—0+
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Some examples of isotropic elastic models
Neo-Hooke for incompressible materials

1
W(lc) = gullc = 3).
Mooney-Rivlin (1940), (1948) model for incompressible materials

W(Ic,llc) = Cl(IC — 3) + CQ(IIC — 3)
Ogden (1972) model

W(A1, A2, A3) = g(J +Zﬂz (A1, A2, Az),

where .
Ki(A1,A2,A3) = - AT+ AT+ A5 —3)
K3
Restrictions to parameters
Zuiai =2u, and p;a; > 0.
i=1
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Isotropic elastic models (cont'd)

One specific choice for the g-function, Ciarlet (1988):

1

9(J) = 7A* = 1) — <%A + u) In(.J),

and A, i can be interpreted as Lamé constants.
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Next

Exercises on Thursday at 2 PM in the CAD class K1242.
PVW in 1-D bar example using different constitutive model.

Next lecture, objectivity, updated Lagrangian formulation.
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