## FEM advanced course

Lecture 2 - Kinematics, balance equations, stress measures, linearization

Reijo Kouhia

Tampere University, Structural Mechanics

## General structure



$$
\begin{aligned}
B^{*} \boldsymbol{\sigma} & =\rho \overline{\boldsymbol{b}} \\
\boldsymbol{\sigma} & =\mathbb{C} \boldsymbol{\varepsilon} \\
\varepsilon & =G \boldsymbol{u}
\end{aligned} \quad \begin{aligned}
& \text { equilibrium } \\
& \\
&
\end{aligned}
$$

## Principle of virtual work



$$
-\int_{\Omega_{0}} \delta \boldsymbol{E}: \boldsymbol{S} \mathrm{d} V+\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \rho_{0} \overline{\boldsymbol{b}} \mathrm{~d} V+\int_{\partial_{\Omega_{t 0}}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A-\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \boldsymbol{u} \rho_{0} \mathrm{~d} V=0
$$

$$
\begin{aligned}
B^{*} \boldsymbol{S} & =\rho_{0} \overline{\boldsymbol{b}} & & \text { equilibrium } \\
\boldsymbol{S} & =\mathbb{C} \boldsymbol{E} & & \text { constitutive model } \\
\boldsymbol{E}=G \boldsymbol{u} \quad \Rightarrow \quad \delta \boldsymbol{E} & =B \delta \boldsymbol{u} & & \text { kinematical relation }
\end{aligned}
$$

$B^{*}$ is the adjoint operator of $B$.

## Description of motion

A material point has coordinates $\boldsymbol{X}$ in the undeformed state.
After deformation it is moved to the place $\boldsymbol{x}$. A mapping $\varphi$ is called the motion

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{\varphi}(\boldsymbol{X}, t)=\boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X}, t) \\
x_{i}=\varphi_{i}(\boldsymbol{X}, t)=X_{i}+u_{i}(\boldsymbol{X}, t),
\end{gathered}
$$

and $\boldsymbol{u}$ is the displacement vector.

- $\boldsymbol{X}$ are the material coordinates. It means that $\boldsymbol{X}$ indicates the position of a material point at the initial configuration. Frequently used in solid mechanics.
- $\boldsymbol{x}$ are the spatial coordinates. Much used in fluid mechanics.
This distinction is important.
time $t$



## Deformation gradient

Deformation gradient $\boldsymbol{F}$ gives the change of an infinitesimal line element at $P$

$$
\mathrm{d} \boldsymbol{x}=\boldsymbol{F} \mathrm{d} \boldsymbol{X}, \quad \boldsymbol{F}=\frac{\partial \varphi}{\partial \boldsymbol{X}},
$$



## Deformation gradient - cont'd

In indicial notation

$$
\mathrm{d} x_{i}=F_{i j} \mathrm{~d} X_{j},
$$

$$
F_{i j}=\frac{\partial \varphi_{i}}{\partial X_{j}}=\frac{\partial X_{i}}{\partial X_{j}}+\frac{\partial u_{i}}{\partial X_{j}}=\delta_{i j}+\frac{\partial u_{i}}{\partial X_{j}}, \quad \text { or } \quad \boldsymbol{F}=\boldsymbol{I}+\boldsymbol{H}, \quad \text { where } \quad \boldsymbol{H}=\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}
$$

is the displacement gradient. If there is no deformation, then $\boldsymbol{F}=\boldsymbol{I}$.
Deformation gradient $\boldsymbol{F}$ contains both strains and rigid body rotation and can be decomposed as (the polar decomposition)

$$
\boldsymbol{F}=\boldsymbol{R} \boldsymbol{U}=\boldsymbol{V} \boldsymbol{R}
$$

where $\boldsymbol{R}$ is orthogonal rotation tensor and $\boldsymbol{U}$ and $\boldsymbol{V}$ are the symmetric and positive definite right and left stretch tensors.

## Definition of strain

Length of a line element PQ is $\mathrm{d} S=\sqrt{\mathrm{d} \boldsymbol{X} \cdot \mathrm{d} \boldsymbol{X}}$
In deformed state $|p q|=\mathrm{d} s=\sqrt{\mathrm{d} \boldsymbol{x} \cdot \mathrm{d} \boldsymbol{x}}$


$$
\begin{aligned}
\frac{1}{2}\left[(\mathrm{~d} s)^{2}-(\mathrm{d} S)^{2}\right] & =\frac{1}{2}(\mathrm{~d} \boldsymbol{x} \cdot \mathrm{~d} \boldsymbol{x}-\mathrm{d} \boldsymbol{X} \cdot \mathrm{~d} \boldsymbol{X}) \\
& =\frac{1}{2} \mathrm{~d} \boldsymbol{X} \cdot\left(\boldsymbol{F}^{T} \boldsymbol{F}-\boldsymbol{I}\right) \mathrm{d} \boldsymbol{X}=\mathrm{d} \boldsymbol{X} \cdot \boldsymbol{E} \mathrm{~d} \boldsymbol{X}
\end{aligned}
$$

where $\boldsymbol{E}$ is the Green-Lagrange strain tensor.

## Green-Lagrange strain tensor

$$
\boldsymbol{E}=\frac{1}{2}\left(\boldsymbol{F}^{T} \boldsymbol{F}-\boldsymbol{I}\right)=\frac{1}{2}(\boldsymbol{C}-\boldsymbol{I}),
$$

where $\boldsymbol{C}=\boldsymbol{F}^{T} \boldsymbol{F}=\boldsymbol{U}^{T} \boldsymbol{R}^{T} \boldsymbol{R} \boldsymbol{U}=\boldsymbol{U}^{2}$ is the right Cauchy-Green deformation tensor and $\boldsymbol{U}$ is the right Cauchy-Green stretch tensor. For pure rigid body rotation $\boldsymbol{E}=\boldsymbol{0}$.
G-L in terms of displacement

$$
\boldsymbol{E}=\frac{1}{2}\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}+\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}\right)^{T}+\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}\right)^{T} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}\right)=\frac{1}{2}\left(\boldsymbol{H}+\boldsymbol{H}^{T}+\boldsymbol{H}^{T} \boldsymbol{H}\right)
$$

If $\partial \boldsymbol{u} / \partial \boldsymbol{X} \ll 1$, then

$$
\boldsymbol{E} \approx \boldsymbol{\varepsilon}=\frac{1}{2}\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}+\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right)^{T}\right)=\frac{1}{2}\left(\boldsymbol{H}+\boldsymbol{H}^{T}\right)=\operatorname{sym} \operatorname{grad} \boldsymbol{u}
$$

where $\varepsilon$ is the infinitesimal strain tensor - notice that in geometrically linear theory $\boldsymbol{x}=\boldsymbol{X}$.

## Other strain tensors

## A general strain definition can be stated as

$$
\boldsymbol{E}^{(m)}=\frac{1}{m}\left(\boldsymbol{U}^{m}-\boldsymbol{I}\right) \quad \text { or } \quad \boldsymbol{e}^{(m)}=\frac{1}{m}\left(\boldsymbol{V}^{m}-\boldsymbol{I}\right)
$$

- $m=2$ corresponds to the G-L strain tensor.
- The Hencky or logarithic strain tensor is obtained when $m \rightarrow 0^{+}$

$$
\lim _{m \rightarrow 0^{+}} \boldsymbol{E}^{(m)}=\ln \boldsymbol{U}, \quad \text { or } \quad \lim _{m \rightarrow 0^{+}} \boldsymbol{e}^{(m)}=\ln \boldsymbol{V}
$$

- The Biot strain tensor for $m=1$

$$
\boldsymbol{E}^{(1)}=\boldsymbol{U}-\boldsymbol{I}
$$

 state correctly.

For interested reader, more on strain measures can be found in Finnish at http://rmseura.tkk.fi/rmlehti/2016/nro2/RakMek_49_2_2016_6.pdf

## Other strain tensors (cont'd)

Spatial (Eulerian) strain tensor when $m=-2$ is called the Almansi strain tensor (or Almansi-Hamel)

$$
\boldsymbol{e}^{(-2)}=\frac{1}{2}\left(\boldsymbol{I}-\boldsymbol{V}^{-2}\right)=\frac{1}{2}\left(\boldsymbol{I}-\boldsymbol{b}^{-1}\right),
$$

where $\boldsymbol{b}$ is the left Cauchy-Green deformation tensor tensor and it is related to the left Cauchy-Green stretch tensor $\boldsymbol{V}$ as

$$
\boldsymbol{b}=\boldsymbol{F} \boldsymbol{F}^{T}=\boldsymbol{V} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{V}^{T}=\boldsymbol{V}^{2}
$$

Tensors $\boldsymbol{C}, \boldsymbol{U}, \boldsymbol{b}$ and $\boldsymbol{V}$ are frequently used in large strain elastic constitutive models.

## Infinitesimal strain tensor

If deformations (displacements, rotations) are small, distinction between material and spatial coordinates is irrelevant.

Infinitesimal strain tensor, also known as the small strain tensor is defined as

$$
\varepsilon=\operatorname{sym} \operatorname{grad} \boldsymbol{u}
$$

or in index notation

$$
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

Von Kármán notation

$$
\varepsilon=\left[\begin{array}{ccc}
\varepsilon_{x} & \frac{1}{2} \gamma_{x y} & \frac{1}{2} \gamma_{x z} \\
\frac{1}{2} \gamma_{x y} & \varepsilon_{y} & \frac{1}{2} \gamma_{y z} \\
\frac{1}{2} \gamma_{x z} & \frac{1}{2} \gamma_{y z} & \varepsilon_{z}
\end{array}\right]
$$

## Strain in arbitrary direction

Strain in direction $\boldsymbol{n}(|\boldsymbol{n}|=1)$

$$
\varepsilon_{n}=\boldsymbol{n} \cdot \varepsilon \boldsymbol{n}
$$

Change in the angle between orthonormal vectors $n$ and $m$

$$
\gamma_{n m}=2 \boldsymbol{n} \cdot \varepsilon \boldsymbol{m}
$$



## Principal strains

Eigenvalues of the strain tensor

$$
\varepsilon \boldsymbol{n}=\lambda \boldsymbol{n} \quad(\varepsilon-\lambda \boldsymbol{I}) \boldsymbol{n}=\boldsymbol{0}
$$

Non-trivial solution for $\boldsymbol{n}$ if

$$
\operatorname{det}(\varepsilon-\lambda \boldsymbol{I})=0
$$

Characteristic polynomial

$$
-\lambda^{3}+I_{1}^{\varepsilon} \lambda^{2}+I_{2}^{\varepsilon} \lambda+I_{3}^{\varepsilon}=0
$$

where

$$
\begin{aligned}
& I_{1}^{\varepsilon}=\operatorname{tr} \varepsilon=\varepsilon_{k k}=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33} \\
& I_{2}^{\varepsilon}=\frac{1}{2}\left[\operatorname{tr}\left(\varepsilon^{2}\right)-(\operatorname{tr} \varepsilon)^{2}\right] \\
& I_{3}^{\varepsilon}=\operatorname{det} \varepsilon
\end{aligned}
$$

are called the principal invariants of the infinitesimal strain tensor.

## Principal stretches

Eigenvalues $\lambda$ of the right stretch tensor

$$
\boldsymbol{U} \boldsymbol{n}=\lambda \boldsymbol{n} \quad(\boldsymbol{U}-\lambda \boldsymbol{I}) \boldsymbol{n}=\boldsymbol{O}
$$

Non-trivial solution for $\boldsymbol{n}$ if

$$
\operatorname{det}(\boldsymbol{U}-\lambda \boldsymbol{I})=0
$$

Characteristic polynomial

$$
-\lambda^{3}+I_{1}^{U} \lambda^{2}+I_{2}^{U} \lambda+I_{3}^{U}=0
$$

where

$$
I_{1}^{U}=\operatorname{tr} \boldsymbol{U}, \quad I_{2}^{U}=\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{U}^{2}\right)-(\operatorname{tr} \boldsymbol{U})^{2}\right] \quad I_{3}^{U}=\operatorname{det} \boldsymbol{U}
$$

are called the principal invariants of the strech tensor and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the principal stretches.

## Volumetric - isochoric split in small strains

The small strain tensor can be additively split into volumetric and isochoric i.e. volume preserving parts as

$$
\varepsilon=\frac{1}{3}(\operatorname{tr} \varepsilon) \boldsymbol{I}+\boldsymbol{e}
$$

where $\operatorname{tr} \varepsilon=\varepsilon_{\text {vol }}$ is the volumetric strain

$$
\varepsilon_{\mathrm{vol}}=\frac{V-V_{0}}{V_{0}}
$$

and $\boldsymbol{e}$ is the deviatoric part of the strain tensor $(\operatorname{tr} \boldsymbol{e}=0)$.

## Volumetric - isochoric split for large strains

In large strain analysis, the deformation gradient $\boldsymbol{F}$ is multiplicatively decomposed into volume changing i.e. dilatational and volume preserving i.e. distortional parts. Relative volume change is $J=\operatorname{det} \boldsymbol{F}$, thus

$$
\boldsymbol{F}=\left(J^{1 / 3} \boldsymbol{I}\right) \hat{\boldsymbol{F}}=J^{1 / 3} \hat{\boldsymbol{F}}, \quad \text { also } \quad \boldsymbol{C}=\left(J^{2 / 3} \boldsymbol{I}\right) \hat{\boldsymbol{C}}=J^{2 / 3} \hat{\boldsymbol{C}}
$$

Now $\operatorname{det} \hat{\boldsymbol{F}}=1$ and $\operatorname{det} \hat{\boldsymbol{C}}=(\operatorname{det} \hat{\boldsymbol{F}})^{2}=1$.
Logarithmic strains decompose additively! We will return to this later.

## Cauchy stress tensor

The Cauchy stress tensor $\boldsymbol{\sigma}$ gives the actual force $\mathrm{d} \boldsymbol{f}$ on the deformed surface area $\mathrm{d} A_{t}$ on the deformed configuration at $\boldsymbol{x}$

$$
\mathrm{d} \boldsymbol{f}=\boldsymbol{\sigma} \boldsymbol{n} \mathrm{d} A_{t},
$$

the traction vector is $\boldsymbol{t}=\boldsymbol{\sigma} \boldsymbol{n}$. The Cauchy stress is also called as the true stress.


Notice that the indexes of the stress tensor $\sigma_{i j}$ is now defined such that the first component is in the direction of the stress and the second one to the normal.

## Other stress measures, the first Piola-Kirchhoff stress tensor

The first Piola-Kirchhoff stress tensor $\boldsymbol{P}$ gives the actual force $\mathrm{d} \boldsymbol{f}$ on the deformed surface area $\mathrm{d} A_{t}$, but is reckoned per unit area of the undeformed area $\mathrm{d} A_{0}$ and expressed the force in terms of the unit normal $\boldsymbol{N}$ to $\mathrm{d} A_{0}$ at $\boldsymbol{X}$

$$
\mathrm{d} \boldsymbol{f}=\boldsymbol{\sigma} \boldsymbol{n} \mathrm{d} A_{t}=\boldsymbol{P} \boldsymbol{N} \mathrm{d} A_{0}
$$



## Other stress measures, the second Piola-Kirchhoff stress tensor

Define a pseudo force vector $\mathrm{d} \tilde{\boldsymbol{f}}$ in the reference configuration such that if we map it with the deformation gradient $\boldsymbol{F}$ we obtain the force vector $\mathrm{d} \boldsymbol{f}$ in the deformed configuration $\mathrm{d} \boldsymbol{f}=\boldsymbol{F} \mathrm{d} \tilde{\boldsymbol{f}}$ or $\mathrm{d} \tilde{\boldsymbol{f}}=\boldsymbol{F}^{-1} \mathrm{~d} \boldsymbol{f}$, then define the second Piola-Kirchhoff stress tensor $S$ as

$$
\boldsymbol{S} \boldsymbol{N} \mathrm{d} A_{0}=\tilde{\boldsymbol{T}} \mathrm{d} A_{0}=\mathrm{d} \tilde{\boldsymbol{f}}=\boldsymbol{F}^{-1} \mathrm{~d} \boldsymbol{f}=\boldsymbol{F}^{-1} \boldsymbol{P} \boldsymbol{N} \mathrm{~d} A_{0}
$$



## Relations between different stress tensors

Between Cauchy and PK1

$$
\boldsymbol{P}=J \boldsymbol{\sigma} \boldsymbol{F}^{-T}, \quad \boldsymbol{\sigma}=J^{-1} \boldsymbol{P} \boldsymbol{F}^{T}
$$

Between PK1 and PK2

$$
\boldsymbol{S}=\boldsymbol{F}^{-1} \boldsymbol{P}, \quad \boldsymbol{P}=\boldsymbol{F} \boldsymbol{S}
$$

Between Cauchy and PK2

$$
\boldsymbol{S}=J \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-T}, \quad \boldsymbol{\sigma}=J^{-1} \boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{T}
$$

Cauchy and PK2 stress tensors are symmetric for standard continuum theories (non-polar) but PK1 obeys

$$
\boldsymbol{P} \boldsymbol{F}^{T}=\boldsymbol{F} \boldsymbol{P}^{T}
$$

## Note on dual stress measure

Stress power should be independent of the chosen strain measure. For the Green-Lagrange strain rate $\dot{\boldsymbol{E}}$ the corresponding stress measure is the second Piola-Kirchhoff pseudo-stress $S$ such that the power

$$
\int_{\Omega_{0}} \boldsymbol{S}: \dot{\boldsymbol{E}} \mathrm{d} V=\int_{\Omega_{t}} \boldsymbol{\sigma}: \boldsymbol{D} \mathrm{d} v
$$

where $\boldsymbol{D}$ is the strain rate tensor, i.e. the symmetric part of the spatial velocity gradient

$$
\boldsymbol{D}=\frac{1}{2}\left(\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}+\left(\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}\right)^{T}\right)
$$

and $\sigma$ is the Cauchy stress tensor (true stress).
In this course we operate in the geometrically linear setting, thus $\dot{\varepsilon} \approx D$, where $\varepsilon$ is the infinitesimal strain tensor.

## Virtual strains and linearization

Virtual G-L strain tensor

$$
\delta \boldsymbol{E}=\delta\left[\frac{1}{2}\left(\boldsymbol{F}^{T} \boldsymbol{F}-\boldsymbol{I}\right)\right]=\frac{1}{2}\left(\delta \boldsymbol{F}^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \delta \boldsymbol{F}\right)
$$

and the virtual deformation gradient is

$$
\delta \boldsymbol{F}=\delta(\boldsymbol{I}+\boldsymbol{H})=\delta \boldsymbol{H}=\frac{\partial \delta \boldsymbol{u}}{\partial \boldsymbol{X}}
$$

Then for the variation of the G-L strain tensor we get

$$
\delta \boldsymbol{E}=\frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}+\boldsymbol{F}^{T} \delta \boldsymbol{H}\right)
$$

For linearized expressions we just change the variation symbol $\delta$ to the increment $\Delta$.

## Linearization of virtual work

Considering only static case for simplicity

$$
\begin{equation*}
-\int_{\Omega_{0}} \delta \boldsymbol{E}: \boldsymbol{S} \mathrm{d} V+\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \rho_{0} \overline{\boldsymbol{b}} \mathrm{~d} V+\int_{\partial_{\Omega_{t 0}}} \delta \boldsymbol{u} \cdot \bar{t} \mathrm{~d} A=0 \tag{1}
\end{equation*}
$$

Assuming constitutive equation in the form $\boldsymbol{S}=\mathbb{C} \boldsymbol{E}$ and we are in the displaced state $\boldsymbol{u}_{1}$ and we try to solve the increment to obtain $\boldsymbol{u}_{2}=\boldsymbol{u}_{1}+\Delta \boldsymbol{u}$. At the configuration 1 stresses are denoted as $\boldsymbol{S}_{1}$ and then

$$
\boldsymbol{S}_{2}=\boldsymbol{S}_{1}+\Delta \boldsymbol{S}=\boldsymbol{S}_{1}+\mathbb{C} \Delta \boldsymbol{E}
$$

substituting it and $\delta \boldsymbol{E}, \Delta \boldsymbol{E}$ and $\boldsymbol{F}_{2}=\boldsymbol{F}_{1}+\Delta \boldsymbol{F}=\boldsymbol{F}_{1}+\Delta \boldsymbol{H}$ into the VW-equation (1) gives

$$
\begin{array}{r}
-\int_{\Omega_{0}} \frac{1}{2}\left[\delta \boldsymbol{H}^{T}\left(\boldsymbol{F}_{1}+\Delta \boldsymbol{H}\right)+\left(\boldsymbol{F}_{1}^{T}+\Delta \boldsymbol{H}^{T}\right) \delta \boldsymbol{H}\right]:\left(\boldsymbol{S}_{1}+\mathbb{C} \frac{1}{2}\left[\Delta \boldsymbol{H}^{T}\left(\boldsymbol{F}_{1}+\Delta \boldsymbol{H}\right)+\left(\boldsymbol{F}_{1}^{T}+\Delta \boldsymbol{H}\right) \Delta \boldsymbol{H}\right]\right) \mathrm{d} V+ \\
\\
+\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \rho_{0} \overline{\boldsymbol{b}} \mathrm{~d} V+\int_{\partial_{\Omega_{t 0}}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A=0
\end{array}
$$

## Linearization of virtual work - cont'd

Rearranging and neglecting all terms higher than linear in $\Delta \boldsymbol{u}$ (i.e. $\Delta \boldsymbol{H}$ )-terms

$$
\begin{aligned}
& -\int_{\Omega_{0}} \frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}_{1}+\boldsymbol{F}_{1}^{T} \delta \boldsymbol{H}\right): \boldsymbol{S}_{1} \mathrm{~d} V+\int_{\Omega_{0}} \delta \boldsymbol{u} \cdot \rho_{0} \overline{\boldsymbol{b}} \mathrm{~d} V+\int_{\partial_{\Omega_{t 0}}} \delta \boldsymbol{u} \cdot \overline{\boldsymbol{t}} \mathrm{~d} A= \\
& \quad \int_{\Omega_{0}} \frac{1}{2}\left(\delta \boldsymbol{H}^{T} \boldsymbol{F}_{1}+\boldsymbol{F}_{1}^{T} \delta \boldsymbol{H}\right) \mathbb{C} \frac{1}{2}\left(\Delta \boldsymbol{H}^{T} \boldsymbol{F}_{1}+\boldsymbol{F}_{1}^{T} \Delta \boldsymbol{H}\right) \mathrm{d} V+\int_{\Omega_{0}} \frac{1}{2}\left(\delta \boldsymbol{H}^{T} \Delta \boldsymbol{H}+\Delta \boldsymbol{H}^{T} \delta \boldsymbol{H}\right): \boldsymbol{S}_{1} \mathrm{~d} V .
\end{aligned}
$$

The red part is the internal resistance force, the black is the external force and the blue gives the Jacobian matrix.

## Next

## Exercises on Thursday at 2 PM in class FC112.

PVW in 1-D bar example, derivation of equilibrium equations, and linearizing the virtual work equations. Using simple linear interpolation derive the FE-equations. Home assignment means to code it.

