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General structure

balance

constitutive equations

kinematics
B*o = pb

o =Ce

equilibrium
e=Gu

constitutive model
kinematical relation in linear case G =B
B* is the adjoint operator of B.
=] = - =




Principle of virtual work

balance

internal VW

external VW
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kinematics
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B*S = pob equilibrium
S=CEFE constitutive model
E=Gu = J{E= Bdu kinematical relation
B™ is the adjoint operator of B. . - = = Hao



Description of motion

A material point has coordinates X in the
undeformed state.

After deformation it is moved to the place . A
mapping ¢ is called the motion

z=p(X,t)=X +u(X,?)
X :@i(X,t) :Xi—l—ui(X,t),

and wu is the displacement vector.

@ X are the material coordinates. It means that X
indicates the position of a material point at the
initial configuration. Frequently used in solid
mechanics.

@ x are the spatial coordinates. Much used in fluid
mechanics.

This distinction is important.
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Deformation gradient

Deformation gradient F' gives the change of an infinitesimal line element at P

dez = FdX, F=_-%2

dx = ~'d¢

time ¢t = () Hﬂ_ﬂ
[

Figure from G.Holzapfel: Nonli solid hanics, p. 70
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Deformation gradient - cont'd

In indicial notation

dl’i = Fijdea
Fy; = = = by + o, F=I+H, where H=_—
i 7 ox, T X, + e j + X, or + where X

is the displacement gradient. If there is no deformation, then FF = 1.

Deformation gradient F' contains both strains and rigid body rotation and can be decomposed as (the
polar decomposition)

F =RU = VR,

where R is orthogonal rotation tensor and U and V are the symmetric and positive definite right and
left stretch tensors.
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Definition of strain

Length of a line element PQ is dS = vd X .dX
In deformed state |pg| = ds = Vdz-dx

1(ds)® — (d9)?] = i(dz-dz — dX-dX)
=3dX-(F'F - I)dX =dX - EdX

where E is the Green-Lagrange strain tensor.
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Green-Lagrange strain tensor

E=YF'F-1)=1(C-1I),

where C = FTF = UTRTRU = U? is the right Cauchy-Green deformation tensor and U is the
right Cauchy-Green stretch tensor. For pure rigid body rotation F = 0.
G-L in terms of displacement

1( Ou ou\" ou\" ou 1 T T
E—§<a—x+<a—x> *(a—x> ﬁ)‘E(HJ“H +HH)

If Ju/0X < 1, then

1(0u u\" 1 T
EN€_§<8_:1:+(8_1:> >_§<H+H >_symgradu,

where € is the infinitesimal strain tensor - notice that in geometrically linear theory = X.
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Other strain tensors

A general strain definition can be stated as

E™ = _—(Um"~-1I) o e™=—(V"-1I).

1 1
m m
@ m = 2 corresponds to the G-L strain tensor.

@ The Hencky or logarithic strain tensor is obtained when m — 0T

lim E™ =lnU, o lim ™ =InV,

m—0t m—0t

@ The Biot strain tensor for m =1
EV=U-1
Some people call the logarithmic strain as the true strain. Please, do not use that naming. Definition of a strain is a geometrical concept and all properly defined strain measures describe strain
state correctly.

For interested reader, more on strain measures can be found in Finnish at http://rmseura.tkk.fi/rmlehti /2016 /nro2/RakMek_49_2_2016_6.pdf
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Other strain tensors (cont'd)

Spatial (Eulerian) strain tensor when m = —2 is called the Almansi strain tensor (or Almansi-Hamel)

= (I-V)=-(I-b""),

N | —
N | —

where b is the left Cauchy-Green deformation tensor tensor and it is related to the left Cauchy-Green
stretch tensor V as
b=FF" = VRR"V" = V>

Tensors C, U, b and V are frequently used in large strain elastic constitutive models.
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Infinitesimal strain tensor

If deformations (displacements, rotations) are small, distinction between material and spatial
coordinates is irrelevant.

Infinitesimal strain tensor, also known as the small strain tensor is defined as

€ =symgrad u

e — 1 8uz + 8Uj
2 8.13]' 6.231

1 1
€z 3 Vzy ?’sz
_ 1
€= ?'Yzy 1€y §'7yz
5Yzz  3Vyz €z

or in index notation

Von Karman notation
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Strain in arbitrary direction

Strain in direction n (|n| =1)
En = N-EN.

Change in the angle between orthonormal vectors n and m

Ynm = 2M-EM.

b
3 dx?
a
dxX? z dxV
2
p
P axmw 4
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Principal strains

Eigenvalues of the strain tensor
En =An (e—A)n=0
Non-trivial solution for n if
det(e = AI)=0
Characteristic polynomial
NN+ EA+I5=0

where

If =tre = epp = €11 + €22 + €33
I5 = 3tr(e?) — (tre)?]
IS =dete

are called the principal invariants of the infinitesimal strain tensor.
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Principal stretches

Eigenvalues X of the right stretch tensor
Un=\n (U-X)n=20

Non-trivial solution for n if
det(U —AI)=0

Characteristic polynomial
N+ N+ I+ I =0

where
IV =wU, IJ=1tU%-&0)% IJ=detU

are called the principal invariants of the strech tensor and A1, Ao, A3 are the principal stretches.
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Volumetric - isochoric split in small strains

The small strain tensor can be additively split into volumetric and isochoric i.e. volume preserving parts
as

e=1i(tre)I + e

where tre = e, is the volumetric strain

V-1
Evol = T+, >

Vo

and e is the deviatoric part of the strain tensor (tre = 0).
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Volumetric - isochoric split for large strains

In large strain analysis, the deformation gradient F' is multiplicatively decomposed into volume changing
i.e. dilatational and volume preserving i.e. distortional parts. Relative volume change is J = det F', thus

F=J'BDF=JF, aso C=J¥1C=J"C
Now det F' = 1 and det € = (det F)2 = 1.

Logarithmic strains decompose additively! We will return to this later.
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Cauchy stress tensor

The Cauchy stress tensor o gives the actual force df on the deformed surface area dA; on the
deformed configuration at «

df = ondA;,

the traction vector is t = on. The Cauchy stress is also called as the true stress.

df
dA,

Notice that the indexes of the stress tensor o;; is now defined such that the first component is in the
direction of the stress and the second one to the normal.
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Other stress measures, the first Piola-Kirchhoff stress tensor

The first Piola-Kirchhoff stress tensor P gives the actual force df on the deformed surface area dA,,

but is reckoned per unit area of the undeformed area dA( and expressed the force in terms of the unit
normal IN to d4p at X

daf
d AL
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Other stress measures, the second Piola-Kirchhoff stress tensor

Define a pseudo force vector df in the reference configuration such that if we map it with the deformation

gradient F we obtain the force vector df in the deformed configuration df = Fdf or df = F~'df, then define
the second Piola-Kirchhoff stress tensor S as

SNdA, = TdAo = df = F'df = F ' PNdA,

F
df
dAy N daf
dA,;
n
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Relations between different stress tensors

Between Cauchy and PK1
P=JoF T, o=J'PFT

Between PK1 and PK2
S=F'P, P=FS
Between Cauchy and PK2
S=JF 'oF T, o=J 'FSFT
Cauchy and PK2 stress tensors are symmetric for standard continuum theories (non-polar) but PK1
obeys
PF” = FP”
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Note on dual stress measure

Stress power should be independent of the chosen strain measure. For the Green-Lagrange strain rate E
the corresponding stress measure is the second Piola-Kirchhoff pseudo-stress S such that the power

/ S:EdV:/ o: Ddv
Q0 Q
where D is the strain rate tensor, i.e. the symmetric part of the spatial velocity gradient
1(0v ov\"
D=-|— —
> <8m * <8a:) )
and o is the Cauchy stress tensor (true stress).

In this course we operate in the geometrically linear setting, thus € ~ D, where € is the infinitesimal
strain tensor.
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Virtual strains and linearization

Virtual G-L strain tensor
SE =3§ [%(FTF —1)| = L(6F"F + FT6F).
and the virtual deformation gradient is

_ ohu

OF = 5(I + H) = 6H = 5.

Then for the variation of the G-L strain tensor we get

6E=3(H"F + F"0H).

For linearized expressions we just change the variation symbol ¢ to the increment A.
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Linearization of virtual work

Considering only static case for simplicity

— [ SE:SdV+ 5u-p05dv+/ Su-EdA=0 (1)

Qo Qo 90,0

Assuming constitutive equation in the form S = CE and we are in the displaced state u; and we try to
solve the increment to obtain us = uq + Awu. At the configuration 1 stresses are denoted as Sy and
then

So=81+AS8=8,+CAE,
substituting it and E, AE and Fy = F1 + AF = F, + AH into the VW-equation (1) gives

—/ L6H" (Fi+AH)+(F{ +AH")SH] : (S1+CiAH" (Fi+AH)+(F{ +AH)AH))dV+
Qo

+ (5u-p05dV+/ Su-tdA =0

Qo 90,
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Linearization of virtual work - cont’'d

Rearranging and neglecting all terms higher than linear in Aw (i.e. AH)-terms

7/ S(6HTF, + F{6H): SldV+/
J Qo

6U°p05dv+/ du-tdA =
Qo

0049

/ L6H"F, + F{SH)CY(AH"F, + F{ AH)dV + / L(6H"AH + AH"SH) : S, dV.
Qo QO

The red part is the internal resistance force, the black is the external force and the blue gives the
Jacobian matrix.
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Next

Exercises on Thursday at 2 PM in class FC112.

PVW in 1-D bar example, derivation of equilibrium equations, and linearizing the virtual work equations.
Using simple linear interpolation derive the FE-equations. Home assignment means to code it.
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