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Course material
1 Peter Wriggers, Nonlinear Finite Element Methods, Springer-Verlag 2008,

https://link.springer.com/book/10.1007/978-3-540-71001-1

2 Reijo Kouhia, Computational techniques for the non-linear analysis of structures,
https://webpages.tuni.fi/rakmek/personnel/kouhia/papers/lecture_notes/comp_stab.pdf

Other good books

K.J. Bathe, Finite Element Procedures. 2nd ed. 2014.
https://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf

N.-H. Kim, Introduction to Nonlinear Finite Element Analysis, Springer, 2015.
https://link.springer.com/book/10.1007/978-1-4419-1746-1

T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures,
Wiley, 2013.

M. Kleiber, Incremental Finite Element Modelling in Non-linear Solid Mechanics, Ellis-Horwood, 1989.

J.T. Oden, Finite Elements of Nonlinear Continua, McGraw-Hill 1972, Dover 2006.

J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press. 2004.

S. Krenk, Non-linear Modeling and Analysis of Solids and Structures, Cambridge University Press. 2009.
https://doi.org/10.1017/CBO9780511812163
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Course content

1 Solution methods of non-linear algebraic equations.

2 Kinematical equations.

3 Balance equations and stress measures.

4 Constitutive models.

5 Variational problem.

6 Linearization.

7 Spatial discretization.

8 Solution methods for static/stationary problems.

9 Time integration methods. Vibration analysis.

10 Solution methods for stability analysis.

11 Formulation of structural elements: truss, beam, plate, shell, 3D-continuum.

12 Introduction to contact problems.
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Course timetable

Lecture 1. Solution methods of non-linear algebraic equations.

Lecture 2. Kinematical and balance equations, stress measures, linearization.

Lecture 3. Elastic constitutive models.

Lecture 4. Objective rates, total- and updated Lagrangian formulations.

Lecture 5. Truss element with TL-formulation.

Lecture 6. Truss element with UL-formulation. Timoshenko beam model.

Lecture 7. Reissner goemetrically exact beam model.

Lecture 8. Path-following methods.

Lecture 9. Plate, shell and 3D-solid elements.

Lecture 10. Solution methods for stability and vibration analysis.

Lecture 11. Solution methods for transient problems.

Lecture 12. Integation of elasto-plastic problems.

Lecture 13. Introduction to contact problems.

Lecture 14. Possible visiting lecture.

R. Kouhia (Tampere University, Structural Mechanics) FEM advanced course 4 / 19



Non-linear algebraic equations

First scalar equations in a single variable x:

f(x) = 0. (1)

Only iterative numerical solution is possible for general equations.

Newton’s method, known also as Newton-Raphson method, is based on linearization.

Start from an initial guess x0, linearize wrt x0

f(x) ≈ f(x0) + f ′(x0)δx = 0 ⇒ δx = −f(x0)/f ′(x0), (2)

and update x1 = x0 + δx. Then proceed as x1 as a linearization point.
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Algorithm Newton for a single variable
1 Select an initial value x0 and compute r0 = |f(x0)|
2 Set i = 0

3 Iterate until convergence

(i) Compute f ′(xi)

(ii) Solve f ′(xi)δx = −f(xi)

(iii) Update xi+1 = xi + δx

(iv) Set i = i+ 1

(v) Compute f(xi)

(vi) If |f(xi)| < εrr0 + εa and |δx| < εr|xi|+ εa convergence

εr is the relative and εa the absolute convergence tolerance for the residual |f |.

A good book for the mathematical and algorithmic aspects is:
C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Siam, 1995,
https://archive.siam.org/books/textbooks/fr16_book.pdf, where Chapter 5 is devoted to
Newton’s method.
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Example 1
A non-linear spring with a force displacement relation R(x) = k1x+ k3x

3 and a load P , define a
non-linear equilibrium equation

f(x) = R(x)− P = 0 ⇒ k1x+ k3x
3 − P = 0.

Two cases:
1 Softening spring: k1 = 20, k3 = −0.4, load
P = 50

2 Stiffening spring: k1 = 1, k3 = 2, load P = 100
Use both full Newton and chord (modified) Newton.
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Example 1 - Softening spring, results
εr = 10−5, εa = 10−10.

Full Newton
IT X DX F 1 2.5000E+00 2.5000E+00 -6.2500E+00

IT X DX F 2 3.0000E+00 5.0000E-01 -8.0000E-01

IT X DX F 3 3.0870E+00 8.6956E-02 -2.7484E-02

IT X DX F 4 3.0902E+00 3.2089E-03 -3.8145E-05

IT X DX F 5 3.0902E+00 4.4661E-06 -5.7383E-11

Chord Newton (modified Newton)
IT X DX F 1 2.5000E+00 2.5000E+00 -6.2500E+00

IT X DX F 2 2.8125E+00 3.1250E-01 -2.6489E+00

IT X DX F 3 2.9449E+00 1.3245E-01 -1.3173E+00

IT X DX F 4 3.0108E+00 6.5867E-02 -7.0094E-01

IT X DX F 5 3.0459E+00 3.5047E-02 -3.8570E-01

...
IT X DX F 14 3.0899E+00 2.1268E-04 -2.4365E-03

IT X DX F 15 3.0900E+00 1.2183E-04 -1.3958E-03

IT X DX F 16 3.0901E+00 6.9790E-05 -7.9966E-04

IT X DX F 17 3.0901E+00 3.9983E-05 -4.5814E-04

IT X DX F 18 3.0901E+00 2.2907E-05 -2.6248E-04
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Example 1 - Hardening spring, results

εr = 10−5, εa = 10−10.

Full Newton
IT X DX F 1 1.0000E+02 1.0000E+02 2.0000E+06

IT X DX F 2 6.6667E+01 -3.3333E+01 5.9257E+05

IT X DX F 3 4.4447E+01 -2.2220E+01 1.7556E+05

IT X DX F 4 2.9637E+01 -1.4810E+01 5.1994E+04

IT X DX F 5 1.9773E+01 -9.8638E+00 1.5382E+04

IT X DX F 6 1.3219E+01 -6.5541E+00 4.5333E+03

IT X DX F 7 8.8997E+00 -4.3195E+00 1.3187E+03

IT X DX F 8 6.1307E+00 -2.7690E+00 3.6697E+02

IT X DX F 9 4.5105E+00 -1.6201E+00 8.8045E+01

IT X DX F 10 3.7951E+00 -7.1540E-01 1.3119E+01

IT X DX F 11 3.6451E+00 -1.5007E-01 5.0606E-01

IT X DX F 12 3.6388E+00 -6.2694E-03 8.5926E-04

IT X DX F 13 3.6388E+00 -1.0681E-05 2.7241E-09

What about chord Newton?
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Non-linear system of equations
Newton’s method is locally convergent method. It means that the initial value has to be sufficiently
close to the solution.

Before detailed analysis of our example problem, consider Newton’s method for a system a non-linear
equations.

The non-linear system of equation is briefly written as

f (q) = 0 , (3)

or written in component form

f1(q1, q2, . . . , qn) = 0,

f2(q1, q2, . . . , qn) = 0,

...

fn(q1, q2, . . . , qn) = 0,

so, we have n equations fi = 0 in n unknowns qj .
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Newton’s method for a systems of non-linear equations - linearization
As in the single uknown case, the Newton’s method is based on linearization, starting with an initial
value q0

f (q) ≈ f (q0) + f ′(q0)δq = 0 , (4)

where

f ′(q0) =
∂f

∂q
∣∣q=q 0

(5)

is the Jacobian matrix of the non-linear system f , written in component form

∂f

∂q
=



∂f1
∂q1

∂f1
∂q2

· · · ∂f1
∂qn

∂f2
∂q1

∂f2
∂q2

· · · ∂f2
∂qn

...
...

. . .
...

∂fn
∂q1

∂fn
∂q2

· · · ∂fn
∂qn


. (6)
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Newton’s method for a system of non-linear equations - algorithm

1 Select an initial value q0 and compute r0 = ‖f (q0)‖
2 Set i = 0

3 Iterate until convergence

(i) Compute f ′(q i)

(ii) Solve f ′(q i)δq = −f (q i)

(iii) Update q i+1 = q i + δq

(iv) Set i = i+ 1

(v) Compute f (q i)

(vi) If ‖f (q i)‖ < εrr0 + εa and ‖δq‖ > εr‖q i‖+ εa converged

Computationally heavy part is the solution of the linearized system.
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Convergence of the Newton’s method

Newton attraction theorem. Local convergence of the Newton’s iteration can be proved if:

1 f is continuously differentiable in an open convex domain D ∈ RN

2 there exists q∗ and r > 0 such that B(q∗, r) ∈ D and f (q∗) = 0

3 the Jacobian matrix f ′ is invertible at q∗ and ‖
[
f ′(q∗)

]−1 ‖ ≤ β
4 the Jacobian matrix is Lipschitz continuous in B(q∗, r), i.e.

‖f ′(q)− f ′(y)‖ ≤ γ‖q − y‖ ∀q ,y ∈ B(q∗, r). (7)

Then there exist ε > 0 such that for all q0 ∈ B(q0, ε) the sequence q1, q2, . . . generated by the
Newton’s iteration converges to q∗ and obeys

‖qk+1 − q∗‖ ≤ βγ‖qk − q∗‖2. (8)

Practically, this asymptotic result can be interpreted as doubling of the number of significant digits in
qk as an approximation to q∗.
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Kantorovich theorem

Assume that the Jacobian is nonsingular at the initial point q0, f ′ is Lipschitz continuous in a region
containing q0, and the first step of Newton’s method is sufficiently small, i.e.

1 f is continuously differentiable in a ball B(q0, r), r > 0,

2 the Jacobian matrix f ′ is nonsingular at q0 and ‖
[
f ′(q0)

]−1 ‖ ≤ β
3 the Jacobian matrix is Lipschitz continuous in B(q0, r), see eq. (7), with Lipschitz constant γ,

4 the first Newton step is sufficently small: ‖[f ′(q0)]−1f (q0)‖ ≤ η

then if h0 = βγη < 1
2 the Newton sequence converges to a unique solution in B(q0, r1), where

r1 = min(r, r0)

r0 ≡
1−
√

1− 2h0
βγ

. (9)

and
‖qk − q∗‖ ≤ (2h0)2

k η

h0
, k = 0, 1, 2, . . . (10)
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Example 1 - hardening spring, cause of failure

The equation to be solved was f(x) = x+ 2x3 − 100 = 0 and f ′(x) = 1 + 6x2 is clearly nonsingular for
x > 0.

The Lipschitz constant γ can be estimated from the second derivative

γ < max |f ′′(x)| x ∈ (0, r0). (11)

Now f ′′(x) = 12x and thus γ < 48 when x ∈ (0, 4), also β ≤ |[f ′(0)]−1| = 1 and η = 100.

Now h0 = βγη = 4800� 1
2 .
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Globally convergent methods

Splitting the load in smaller steps, incremental loading. Mathematicians talk about homotopy methods.

It can also be called as a parametrized non-linear problem:

f(x, P ) = k1x+ k3x
3 − P. (12)

Solve the following sequence of problems 0 < λ1P < λ2P < · · · < λn−1P < λnP = P

Thus, the system (12) can be denoted as

f(x, λ) = k1x+ k3x
3 − λPref . (13)
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Incremental procedure with Newton

Solution of system f (q , λ) = 0

1 Select an initial value q0
1, usually a zero vector if λ0 = 0.

2 Increment load λn = λn−1 + ∆λ

3 Set i = 0, and ∆qn = 0

(i) Iterate until convergence

(ii) Compute f ′(q i
n)

(iii) Solve f ′(q i
n)δq = −f (q i

n)

(iv) Update ∆q i+1
n = ∆q i

n + δq

(v) Update q i+1
n = qn−1 + ∆q i+1

n

(vi) Set i = i+ 1

(vii) Compute f (q i)

(viii) If ‖f (q i)‖ < εrr0 + εa and ‖δq‖ > εr‖∆q i‖+ εa converged and proceed to a new step, go to 2.
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Computing the Jacobian matrix

Numerical differentiation is one handy way:

DO J = 1, N
DX = ABS(H*X(J))
IF(DX.LT.H) DX = H
XH = X
XH(J) = XH(J) + DX
CALL EQS(N,NPAR,XH,PAR,FH)
DO I = 1, N

DF(I,J) = (FH(I) - F(I))/DX
END DO

END DO
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Next

Exercises on Thursday at 2 PM in class FC112. Coding Newton’s method for a scalar and vector valued
cases.

Next lecture on non-linear continuum mechanics, kinematic, balance equations and stress measures.
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