FEM advanced course

8. exercise -3 D solid element

Home assignment 8. Code a linear isoparametric trilinear (8 node) continuum element. The element stiffness matrix is computed as

$$
\boldsymbol{K}^{(e)}=\int_{\Omega^{(e)}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{C B} \mathrm{~d} V,
$$

where \boldsymbol{B} is the strain-displacement matrix relating virtual strains to virtual dsplacements $\delta \boldsymbol{\varepsilon}=\boldsymbol{B} \delta \boldsymbol{q}^{(e)}$. The B-matrix can be partitioned in the nodal contributions as

$$
\boldsymbol{B}=\left[\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \ldots, \boldsymbol{B}_{8}\right],
$$

where the part related to node k is

$$
\boldsymbol{B}_{k}=\left(\begin{array}{ccc}
N_{k, X} & 0 & 0 \\
0 & N_{k, Y} & 0 \\
0 & 0 & N_{k, Z} \\
N_{k, Y} & N_{k, X} & 0 \\
0 & N_{k, Z} & N_{k, Y} \\
N_{k, Z} & 0 & N_{k, X}
\end{array}\right)
$$

Use $2 \times 2 \times 2$ Gauss-Legendre integration. The St. Venant-Kirchhoff material stiffness matrix \boldsymbol{C} can be found from Wriggers' book: equation (3.273). You can have a look of the geometry Jacobian matrix and interpolation functions in my lecture notes, page 252, section 12.2.4 https://webpages.tuni.fi/rakmek/mei_55200/pruju/knrm.pdf. Misprint in equation (12.32), it should be

$$
N_{i}(\xi, \eta, \zeta)=\frac{1}{8}\left(1+\xi_{i} \xi\right)\left(1+\eta_{i} \eta\right)\left(1+\zeta_{i} \zeta\right) .
$$

As a startig point compute the volume of an element $\int_{\Omega^{(e)}} d V$.

Analysis cases

Analyse the following cases.

1. Compute the bar in tension. Use such boundary conditions that the transverse deformations can take place freely. Use Young's modulus $E=0.1 \mathrm{GPa}$ and Poisson's ratio $\nu=0.3,0.45,0.49$ and 0.49999 . The tensile load acting on the free 4 kN . Length of the bar is 100 mm and the area of the cross-section is $100 \mathrm{~mm}^{2}$. Use square cross-section.
2. Analyse the bar in pure bending. Use bending moment 20 Nm about the y-axis..
3. Analyse the tension case if all displacements are supressed at the support plane. Preferebly use more than one element to see the deformations.
