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FEM advanced course

4. exercise – numerical integration, coding

Problem 1. Consider a single quadratic line element. The interpolation functions are in
the parent element coordinate ξ as N1(ξ) =

1
2ξ(ξ−1), N2(ξ) = 1−ξ2 and N3(ξ) =

1
2ξ(1+ξ)

and ξ ∈ [−1, 1].
Compute by numerical integration the element e.g. K11 or K12 of the stiffness matrix

of a linear bar element

Kij =

∫ x
(e)
3

x
(e)
1

dNi

dX
EA

dNj

dX
dX.

The integration points and weights for the 1,2 and 3 point Gauss-Legendre quadrature are
given in the table below for integration of∫ 1

−1
f(ξ)dξ ≈

n∑
i=1

wif(ξi)

where the residual error R is given as

22n+1(n!)4

(2n+ 1)[(2n)!]3
d2nf

dξ2n
.

What can you say about the residual if the nodes are placed uniformly, like X1 = 0, X2 =
50mm, X3 = 100mm or the middle node is not placed at the center of an element.

n ξi wi

1 0 2

2 −1/
√
3 1

1/
√
3 1

3 −
√

3/5 5/9
0 8/9√
3/5 5/9

Code the process to compute the elements of the stiffness matrix of an isoparametric
element by numerical integration in a way that it can be easily generalized. The process
is given in the pseudo-code on the next page.

Home assignment 4. Extend your non-linear 1D-truss element code to handle quadratic
isoparametric interpolation- and shape functions. Use as a material model the incompress-
ible Mooney-Rivlin model having the strain energy function (3.115) in the study book

W (λ1, λ2, λ3) =
1

2
µ1(λ

2
1 + λ22 + λ23 − 3)− 1

2
µ2(λ

−2
1 + λ−2

2 + λ−2
3 − 3). (1)

The principal PK2-stresses can now be obtained as

Si =
1

λi

∂W

∂λi
. (2)
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Solve the problem of a hanging rubber band. Displacement is supressed at X = 0 and
the other end at X = L0 is free. The loading is now the gravity load ρ0g in the positive
X-axis direction. Use 1, 2 and 100 elements.

Choose µ1 and µ2 such that the initial response is the same as in before. For the density
use 1000 times the density of rubber, i.e. about ρ0 = 1.1 · 106 kg/m3. You can use same
dimensions for initial length and cross-section area as in problem 2 i.e. L0 = 100 mm and
A0 = 10 mm2.

Plot also the Cauchy stress curve along the X-coordinate.

Solution report should be returned in Moodle prior to exercise 6

Pseudo-code for setting up element stiffness matrix and internal force vector

1. Set up the Gauss-points and the weights

2. Zero the element stiffness matrix and internal force vector

3. Loop over the integration points and sum up the contributions

(a) Call the routine which gives the values of the local derivatives of the interpola-
tion function (and possibly the interpolation functions if necessary)

(b) Compute the Jacobian and the global derivatives of the interpolation functions
(c) Zero the B-matrix
(d) Compute the B-matrix
(e) Set up material stiffness matrix C
(f) Multiply the values of C by the product of weight and Jacobian determinant
(g) Add the contribution of the product BTCB to the element stiffness matrix
(h) If the problem is nonlinear

i. Compute stresses and multiply them by the product of weight and Jacobian
determinant

ii. Compute BT *stresses and add the contribution to the element internal
force vector

iii. Compute the geometric stiffness matrix part and add the contribution to
the element stiffness matrix

Since we are using isoparametric element, the element geometry is also interpolated
with the same interpolation function as the unknown displacement, i.e.

X = N1X
(e)
1 +N2X

(e)
2 +N3X

(e)
3 ,

thus to evaluate it we need just a scalar product of two vector arrays, one having the values
of the interpolation functions and the other containing the node coordinates. In this one
dimensional case the geometry Jacobian can be computed as

J =
1∑nodes

i=1 Ni,ξX
(e)
i

,

where Ni,ξ are the interpolation function derivatives w.r.t. the parent element local coor-
dinate ξ. Then the global derivatives are obtained from

Ni,X = J−1Ni,ξ.
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