Inverse analysis of water vapor transport in building materials using genetic algorithm

Department of Materials Engineering and Chemistry
Faculty of Civil Engineering, Czech Technical University in Prague
Thákurova 7, 166 29 Prague 6, Czech Republic
http://www.fsv.cvut.cz
Outline

• Introduction to Inverse analysis
• Genetic algorithms
• Laboratory experiment
• Computer code HEMOT
• Optimization process
• Results

Motivation and Objectives

• To find new, universal method for determination of material parameters of building materials
• To find water vapor properties of studied material
Introduction to Inverse analysis

- The aim of inverse analysis
- Physical experiment
 \[y^E = E(x^E) \]

- Numerical approximation
 \[M \approx E \]
 \[y^M = M(x^M) \]
 \[\|y^E - y^M\| \approx 0 \]

- **Forward vs. Inverse** mode of inverse analysis
 IM: \[x^M = M^{INV}(y^M) \]
 FM: \[\min F(x) = \min \|y^E - M(x^M)\| \]
Genetic algorithms

- Inspired by Darwin’s Theory of evolution
- The evolution starts from randomly generated population
- Fitness function
- Termination of optimization process

GRADE algorithm
- Chromosome $x_i(g) = (x_{i1}, x_{i2}, x_{i3}, ..., x_{in})$
- Population $P(g) = [x_1(g), x_2(g), ..., x_m(g)]$

- Genetic operators: cross-over, mutation, selection
Genetic operators in GRADE algorithm

- **mutation** \((x_i(g), x_{RP}, \text{mutation_rate})\)

 \[
x_k(g+1) = (x_i(g) + MR(x_{RP} - x_i(g))
 \]

- **cross-over** \((x_q(g), x_r(g), \text{crossing_rate})\)

 \[
x_k(g+1) = \max(x_q(g); x_r(g)) + CR(x_q(g) - x_r(g))
 \]

- **selection** – to reduce number of chromosomes in the population
Laboratory experiment

Fan for optimal distribution of relative humidity in the measuring system

温度, 相对湿度

K₂SO₄

温度, 相对湿度

silica gel

DATA CAPTURE

温度, 相对湿度
Results of laboratory experiment

Objective: To find water vapor permeability of AAC and water vapor exchange coefficient
Computer code HEMOT

- Heat and Moisture transport
- Finite element method
- Kunzel's mathematical model

Moisture balance:

\[
\frac{d\rho_s}{d\varphi} \frac{\partial \varphi}{\partial t} = div\left[D_{\varphi,\rho_s} \nabla \varphi + \beta_{\varphi,\rho_s} \nabla (\varphi \rho_s) \right]
\]

Heat balance:

\[
\frac{dH}{d\varphi} \frac{\partial T}{\partial t} = div(\lambda \nabla T) + I_{\varphi} \rho_s \delta \nabla (\varphi \rho_s)
\]

- Water vapor permeability defined by 5 isolated points with predefined x-coordinate (5 variables of objective function)
- Water vapor exchange coefficient (constant value)
Optimization process

HEMOT
- Computer simulation
- Generating of output file

GRADE
- Creation of initial population
- Generating of input file
- Fitness function assignment
 - Satisfactory fitness level?
 - YES
 - NO
 - Selection
 - Crossing-over
 - Mutation

RESULT
Optimization results

![Graph showing relative humidity against position over different days](image)

- **Day 1, measured**
- **Day 3, measured**
- **Day 5, measured**
- **Day 1, calculated**
- **Day 3, calculated**
- **Day 5, calculated**

Relative humidity [-]

Position [mm]
Optimization results

The water vapor exchange coefficient: $6.76 \times 10^{-9} \text{s/m}$
Conclusions

- Combined experimental and computational approach
- Water vapor permeability as a function of relative humidity
- Time and cost saving method – steady-state is not needed
- Universal method
THANK YOU FOR YOUR ATTENTION