Infrared measurements on a ventilated cladding

Surface temperature measurements
Heat transfer calculation through the insulated part of the envelope

M. Labat, PhD
G. Garnier, PhD
M. Woloszyn, Associate Professor
J.J. Roux, Professor
Experimental set up

- 20m²
- 50m³
- 142 Sensors
- Vapour and heat production
- + wheather station

Diagram showing:
- Particle board
- Cellulose wadding
- Rain screen
- Gypsum board
- Air gap
- Sensors
- Wooden cladding

indoor
outdoor

Thickness (mm)
Aim of this study

Test house ➔ Compare different envelope types
1D- HAM model Validation

Errors on heat transfers around the cladding

Measurements on a wall in summer
Evaluate bi-dimensional effects
IR technique

Infrared radiation measurements:

\[J = \varepsilon \cdot \sigma \cdot T_{Tar}^4 + (1 - \varepsilon) \cdot \sigma \cdot T_{Surr}^4 \]

- \(T_{Surr} \): aluminium foil
- \(\varepsilon \): black tape
- \(T_{Tar} \)
Weather conditions – 30/06

Solar loads (W/m²)

- Direct (Vertical)
- Direct (Horizontal)

Temperature (°C)

IR Measurements

600 700 800

300 400 500

200 300 400

100 200 300

0 100 200 300

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00

35

33

31

29

27

25

23

21

19

17

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Hour
Southern side – 9h40

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Shaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temp (°C)</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>Cladding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Temp (°C)</td>
<td>27.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Max Temp (°C)</td>
<td>28.5</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Wall temperature is 1°C homogenous
Southern side – 11h40
South wall – 13h40

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Shaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temp (°C)</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td>Mean Temp (°C)</td>
<td>46.2</td>
<td>39.1</td>
</tr>
<tr>
<td>Max Temp (°C)</td>
<td>47.6</td>
<td>43.4</td>
</tr>
</tbody>
</table>

Solar loads 280 W/m²

ΔT with air

$[9.4 ; 16.5]$ °C
Weather conditions – 07/07

IR Measurements

Solar Loads (W/m²)

- Direct (Vertical)
- Direct (Horizontal)

T_Air (°C)

Hour

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00
Eastern wall – 6h to 16h

Results plotted for few relative heights (H=3.81 m)

No shaded part

Solar loads > 600 W/m²

\[\Delta T \text{ with air} \]

[28 ; 36]°C
Toward simulations

IR measurements

75% of the cladding is 3°C homogeneous

Temperature distribution on the rain screen?

Computational work
Toward simulations

IR Measurements

Position of thermal sensors

$T_{\text{air outdoor}}$ $T_{\text{air indoor}}$

T_{IR}

Calculated nodes

Boundary

Rain screen
Temperature distribution

One-dimensionnal wall model
Enhanced model

44 IR measurements
=> 44 superimposed one-dimensional models

[Diagram showing IR measurements and temperature models labeled T_{IR} 1, 2, 3, T_{air gap} 1, 2, 3, and T_{Air indoor}, with 1D wall model n°1, 2, 3.]
Fitting air gap coefficients

Increasing air speed in the air gap from 0.1 to 0.3 m/s

On the cladding

On the rain screen
Temperature distribution

Widely spread from 0 to 2.5m

σ > 3°C
(8h00 to 13h20)

Rain screen temperature is not homogeneous
Conclusion

IR measurements
\(\Delta T \) with air:
- [9.4; 16.5]°C on southern side
- [28; 36]°C on eastern side

Heat transfer calculation
Bi-dimensional effect through the air gap
Rain screen temperature is not homogenous

Outlook
Comparison with CFD simulations
Enhancing modelling
Thank you for your attention